- -

Physiological changes of pepper accessions in response to salinity and water stress

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Physiological changes of pepper accessions in response to salinity and water stress

Mostrar el registro completo del ítem

Lopez-Serrano, L.; Penella, C.; San Bautista Primo, A.; López Galarza, SV.; Calatayud, A. (2017). Physiological changes of pepper accessions in response to salinity and water stress. Spanish Journal of Agricultural Research. 15(3):1-10. https://doi.org/10.5424/sjar/2017153-11147

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/153379

Ficheros en el ítem

Metadatos del ítem

Título: Physiological changes of pepper accessions in response to salinity and water stress
Autor: Lopez-Serrano, Lidia Penella, Consuelo San Bautista Primo, Alberto López Galarza, Salvador Vicente Calatayud, Angeles
Entidad UPV: Universitat Politècnica de València. Departamento de Producción Vegetal - Departament de Producció Vegetal
Fecha difusión:
Resumen:
[EN] New sources of water stress and salinity tolerances are needed for crops grown in marginal lands. Pepper is considered one of the most important crops in the world. Many varieties belong to the genus Capsicum spp., ...[+]
Palabras clave: Osmotic potential , Photosynthesis , Proline , Salinity ions , Water potential
Derechos de uso: Reconocimiento (by)
Fuente:
Spanish Journal of Agricultural Research. (issn: 1695-971X )
DOI: 10.5424/sjar/2017153-11147
Editorial:
Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria
Versión del editor: https://doi.org/10.5424/sjar/2017153-11147
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//RTA2013-00022-C02-00/
Agradecimientos:
INIA, Spain (Project RTA2013-00022-C02-01 and doctoral fellowship FPI-INIA to LLS); European Regional Development Fund (ERDF)
Tipo: Artículo

References

Abbad, H., El Jaafari, S., Bort, J., & Araus, J. L. (2004). Comparison of flag leaf and ear photosynthesis with biomass and grain yield of durum wheat under various water conditions and genotypes. Agronomie, 24(1), 19-28. doi:10.1051/agro:2003056

Abideen, Z., Koyro, H.-W., Huchzermeyer, B., Ahmed, M. Z., Gul, B., & Khan, M. A. (2014). Moderate salinity stimulates growth and photosynthesis of Phragmites karka by water relations and tissue specific ion regulation. Environmental and Experimental Botany, 105, 70-76. doi:10.1016/j.envexpbot.2014.04.009

Aktas, H., Abak, K., & Cakmak, I. (2006). Genotypic variation in the response of pepper to salinity. Scientia Horticulturae, 110(3), 260-266. doi:10.1016/j.scienta.2006.07.017 [+]
Abbad, H., El Jaafari, S., Bort, J., & Araus, J. L. (2004). Comparison of flag leaf and ear photosynthesis with biomass and grain yield of durum wheat under various water conditions and genotypes. Agronomie, 24(1), 19-28. doi:10.1051/agro:2003056

Abideen, Z., Koyro, H.-W., Huchzermeyer, B., Ahmed, M. Z., Gul, B., & Khan, M. A. (2014). Moderate salinity stimulates growth and photosynthesis of Phragmites karka by water relations and tissue specific ion regulation. Environmental and Experimental Botany, 105, 70-76. doi:10.1016/j.envexpbot.2014.04.009

Aktas, H., Abak, K., & Cakmak, I. (2006). Genotypic variation in the response of pepper to salinity. Scientia Horticulturae, 110(3), 260-266. doi:10.1016/j.scienta.2006.07.017

Allen RG, Pereira RS, Raes D, Smith M, 1998. Crop evapotranspiration. In: Guidelines for computing crop water requirements - FAO Irrig Drain paper 56. Food and Agriculture Organization of the United Nations, Rome.

Alvino, A., Centritto, M., & Lorenzi, F. (1994). Photosynthesis Response of Sunlit and Shade Pepper (Capsicum annuum) Leaves at Different Positions in the Canopy Under Two Water Regimes. Functional Plant Biology, 21(3), 377. doi:10.1071/pp9940377

Bates, L. S., Waldren, R. P., & Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39(1), 205-207. doi:10.1007/bf00018060

Bojórquez-Quintal E, Velarde-Buendía A, Ku-González Á, Carillo-Pech M, Ortega-Camacho D, Echevaría-Machado I, Pottosin I, Martínez-Estévez M, 2014. Mechanisms of salt tolerance in habanero pepper plants (Capsicum chinense Jacq.): Proline accumulation, ions dynamics and sodium root-shoot partition and compartmentation. Front Plant Sci 5: 1-14.

Bray EA, Bailey-Serres J, Weretilnyk E, 2000. Response to abiotic stress. In: Biochemistry and molecular biology of plants; Gruissem W, Buchannan B, Jones R (eds.). pp: 1158-1249. Am Soc Plant Physiol, Rockville, MD, USA.

Callister, A. N., Arndt, S. K., & Adams, M. A. (2006). Comparison of four methods for measuring osmotic potential of tree leaves. Physiologia Plantarum, 127(3), 383-392. doi:10.1111/j.1399-3054.2006.00652.x

Chartzoulakis, K., & Klapaki, G. (2000). Response of two greenhouse pepper hybrids to NaCl salinity during different growth stages. Scientia Horticulturae, 86(3), 247-260. doi:10.1016/s0304-4238(00)00151-5

CHAVES, M. M. (2002). How Plants Cope with Water Stress in the Field? Photosynthesis and Growth. Annals of Botany, 89(7), 907-916. doi:10.1093/aob/mcf105

Chaves, M. M., Maroco, J. P., & Pereira, J. S. (2003). Understanding plant responses to drought — from genes to the whole plant. Functional Plant Biology, 30(3), 239. doi:10.1071/fp02076

Chaves, M. M., Flexas, J., & Pinheiro, C. (2008). Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Annals of Botany, 103(4), 551-560. doi:10.1093/aob/mcn125

Chen, Z., Cuin, T. A., Zhou, M., Twomey, A., Naidu, B. P., & Shabala, S. (2007). Compatible solute accumulation and stress-mitigating effects in barley genotypes contrasting in their salt tolerance. Journal of Experimental Botany, 58(15-16), 4245-4255. doi:10.1093/jxb/erm284

Colmer, T. D., Munns, R., & Flowers, T. J. (2005). Improving salt tolerance of wheat and barley: future prospects. Australian Journal of Experimental Agriculture, 45(11), 1425. doi:10.1071/ea04162

Cowan IR, Farquhar, G, 1977. Stomatal functioning in relation to leaf metabolism and environment. In: Integration of activity in the higher plants; Jennings DH (ed.). pp: 470-505. University Press, Cambrigde.

Silva, E. N. da, Ribeiro, R. V., Ferreira-Silva, S. L., Viégas, R. A., & Silveira, J. A. G. (2011). Salt stress induced damages on the photosynthesis of physic nut young plants. Scientia Agricola, 68(1), 62-68. doi:10.1590/s0103-90162011000100010

De Oliveira, A. B., Mendes Alencar, N. L., & Gomes-Filho, E. (2013). Comparison Between the Water and Salt Stress Effects on Plant Growth and Development. Responses of Organisms to Water Stress. doi:10.5772/54223

De Pascale S, Ruggiero C, Barbieri G, 2003. Physiological responses of pepper to salinity and drought. J Am Sociol Hortic Sci 128: 48-54.

Del Amor, F. M., Cuadra-Crespo, P., Walker, D. J., Cámara, J. M., & Madrid, R. (2010). Effect of foliar application of antitranspirant on photosynthesis and water relations of pepper plants under different levels of CO2 and water stress. Journal of Plant Physiology, 167(15), 1232-1238. doi:10.1016/j.jplph.2010.04.010

Delfine, S., Tognetti, R., Loreto, F., & Alvino, A. (2002). Physiological and growth responses to water stress in Field-grown bell pepper (Capsicum annuumL.). The Journal of Horticultural Science and Biotechnology, 77(6), 697-704. doi:10.1080/14620316.2002.11511559

Filippou, P., Bouchagier, P., Skotti, E., & Fotopoulos, V. (2014). Proline and reactive oxygen/nitrogen species metabolism is involved in the tolerant response of the invasive plant species Ailanthus altissima to drought and salinity. Environmental and Experimental Botany, 97, 1-10. doi:10.1016/j.envexpbot.2013.09.010

Fischer KS, Wood G, 1981. Breeding and selection for drought tolerance in tropical maize. Proc. Symp. on principles and methods in crop improvement for drought resistance with emphasis on rice, IRRI, Philippines.

Flexas, J., Bota, J., Loreto, F., Cornic, G., & Sharkey, T. D. (2004). Diffusive and Metabolic Limitations to Photosynthesis under Drought and Salinity in C 3 Plants. Plant Biology, 6(3), 269-279. doi:10.1055/s-2004-820867

Gill, S. S., & Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48(12), 909-930. doi:10.1016/j.plaphy.2010.08.016

Hasanuzzaman, M., Nahar, K., & Fujita, M. (2012). Plant Response to Salt Stress and Role of Exogenous Protectants to Mitigate Salt-Induced Damages. Ecophysiology and Responses of Plants under Salt Stress, 25-87. doi:10.1007/978-1-4614-4747-4_2

Hassine, A. B., Ghanem, M. E., Bouzid, S., & Lutts, S. (2008). An inland and a coastal population of the Mediterranean xero-halophyte species Atriplex halimus L. differ in their ability to accumulate proline and glycinebetaine in response to salinity and water stress. Journal of Experimental Botany, 59(6), 1315-1326. doi:10.1093/jxb/ern040

Huang, Y., Bie, Z., He, S., Hua, B., Zhen, A., & Liu, Z. (2010). Improving cucumber tolerance to major nutrients induced salinity by grafting onto Cucurbita ficifolia. Environmental and Experimental Botany, 69(1), 32-38. doi:10.1016/j.envexpbot.2010.02.002

Lutts, S., & Guerrier, G. (1995). Peroxidase activities of two rice cultivars differing in salinity tolerance as affected by proline and NaCl. Biologia plantarum, 37(4). doi:10.1007/bf02908842

Maynard DN, Hochmuth GJ, 2007. Knott's handbook for vegetable growers. John Wiley & Sons, Inc, NY.

Morgan, J. (1992). Osmotic Components and Properties Associated With Genotypic Differences in Osmoregulation in Wheat. Functional Plant Biology, 19(1), 67. doi:10.1071/pp9920067

Munns, R. (2002). Comparative physiology of salt and water stress. Plant, Cell & Environment, 25(2), 239-250. doi:10.1046/j.0016-8025.2001.00808.x

Munns, R., & James, R. A. (2003). Screening methods for salinity tolerance: a case study with tetraploid wheat. Plant and Soil, 253(1), 201-218. doi:10.1023/a:1024553303144

Munns, R., Brady, C., & Barlow, E. (1979). Solute Accumulation in the Apex and Leaves of Wheat During Water Stress. Functional Plant Biology, 6(3), 379. doi:10.1071/pp9790379

Munns, R., & Tester, M. (2008). Mechanisms of Salinity Tolerance. Annual Review of Plant Biology, 59(1), 651-681. doi:10.1146/annurev.arplant.59.032607.092911

Navarro, J. M., Garrido, C., Martínez, V., & Carvajal, M. (2003). Water relations and xylem transport of nutrients in pepper plants grown under two different salts stress regimes. Plant Growth Regulation, 41(3), 237-245. doi:10.1023/b:grow.0000007515.72795.c5

Nio, S. A., Cawthray, G. R., Wade, L. J., & Colmer, T. D. (2011). Pattern of solutes accumulated during leaf osmotic adjustment as related to duration of water deficit for wheat at the reproductive stage. Plant Physiology and Biochemistry, 49(10), 1126-1137. doi:10.1016/j.plaphy.2011.05.011

Noreen Z, Ashraf M, Akram NA, 2010. Salt-induced regulation of some key antioxidant enzymes and physio-biochemical phenomena in five diverse cultivars of turnip (Brassica rapa L.). J Agron Crop Sci 196: 273-285.

Patade, V. Y., Bhargava, S., & Suprasanna, P. (2012). Halopriming mediated salt and iso-osmotic PEG stress tolerance and, gene expression profiling in sugarcane (Saccharum officinarum L.). Molecular Biology Reports, 39(10), 9563-9572. doi:10.1007/s11033-012-1821-7

Patakas, A., Nikolaou, N., Zioziou, E., Radoglou, K., & Noitsakis, B. (2002). The role of organic solute and ion accumulation in osmotic adjustment in drought-stressed grapevines. Plant Science, 163(2), 361-367. doi:10.1016/s0168-9452(02)00140-1

Penella C, Nebauer SG, Lopéz-Galarza S, San Bautista A, Gorbe E, Calatayud A, 2013. Evaluation for salt stress tolerance of pepper genotypes to be used as rootstocks. J Food Agric Environ 11: 1101-1107.

Penella, C., Nebauer, S. G., Bautista, A. S., López-Galarza, S., & Calatayud, Á. (2014). Rootstock alleviates PEG-induced water stress in grafted pepper seedlings: Physiological responses. Journal of Plant Physiology, 171(10), 842-851. doi:10.1016/j.jplph.2014.01.013

Penella C, Nebauer SG, López-Galarza S, Bautista AS, Rodriguez-Burruezo A, Calatayud A, 2014b. Evaluation of some pepper genotypes as rootstocks in water stress conditions. Hort Sci 41: 192-200.

Penella, C., Nebauer, S. G., Quiñones, A., San Bautista, A., López-Galarza, S., & Calatayud, A. (2015). Some rootstocks improve pepper tolerance to mild salinity through ionic regulation. Plant Science, 230, 12-22. doi:10.1016/j.plantsci.2014.10.007

Penella, C., Landi, M., Guidi, L., Nebauer, S. G., Pellegrini, E., Bautista, A. S., … Calatayud, A. (2016). Salt-tolerant rootstock increases yield of pepper under salinity through maintenance of photosynthetic performance and sinks strength. Journal of Plant Physiology, 193, 1-11. doi:10.1016/j.jplph.2016.02.007

Praxedes, S. C., De Lacerda, C. F., DaMatta, F. M., Prisco, J. T., & Gomes-Filho, E. (2009). Salt Tolerance is Associated with Differences in Ion Accumulation, Biomass Allocation and Photosynthesis in Cowpea Cultivars. Journal of Agronomy and Crop Science, 196(3), 193-204. doi:10.1111/j.1439-037x.2009.00412.x

Rouphael, Y., Cardarelli, M., Rea, E., & Colla, G. (2012). Improving melon and cucumber photosynthetic activity, mineral composition, and growth performance under salinity stress by grafting onto Cucurbita hybrid rootstocks. Photosynthetica, 50(2), 180-188. doi:10.1007/s11099-012-0002-1

Saleem, A., Ashraf, M., & Akram, N. A. (2011). Salt (NaCl)-Induced Modulation in some Key Physio-Biochemical Attributes in Okra (Abelmoschus esculentus L.). Journal of Agronomy and Crop Science, 197(3), 202-213. doi:10.1111/j.1439-037x.2010.00453.x

Smirnoff, N., & Cumbes, Q. J. (1989). Hydroxyl radical scavenging activity of compatible solutes. Phytochemistry, 28(4), 1057-1060. doi:10.1016/0031-9422(89)80182-7

Szabados, L., & Savouré, A. (2010). Proline: a multifunctional amino acid. Trends in Plant Science, 15(2), 89-97. doi:10.1016/j.tplants.2009.11.009

Tanjii KK, Kielen NC, 2002. Agricultural drainage water management in arid and semi-arid areas. FAO, Roma.

Yadollahi, A., Arzani, K., Ebadi, A., Wirthensohn, M., & Karimi, S. (2011). The response of different almond genotypes to moderate and severe water stress in order to screen for drought tolerance. Scientia Horticulturae, 129(3), 403-413. doi:10.1016/j.scienta.2011.04.007

Yoshiba, Y., Kiyosue, T., Nakashima, K., Yamaguchi-Shinozaki, K., & Shinozaki, K. (1997). Regulation of Levels of Proline as an Osmolyte in Plants under Water Stress. Plant and Cell Physiology, 38(10), 1095-1102. doi:10.1093/oxfordjournals.pcp.a029093

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem