- -

Spatially-induced nestedness in a neutral model of phage-bacteria networks

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Spatially-induced nestedness in a neutral model of phage-bacteria networks

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Valverde, Sergi es_ES
dc.contributor.author ELENA FITO, SANTIAGO FCO es_ES
dc.contributor.author Solé, Ricard es_ES
dc.date.accessioned 2020-11-05T04:32:24Z
dc.date.available 2020-11-05T04:32:24Z
dc.date.issued 2017-08-02 es_ES
dc.identifier.uri http://hdl.handle.net/10251/154094
dc.description.abstract [EN] Ecological networks, both displaying mutualistic or antagonistic interactions, seem to share common structural traits: the presence of nestedness and modularity. A variety of model approaches and hypothesis have been formulated concerning the significance and implications of these properties. In phage-bacteria bipartite infection networks, nestedness seems to be the rule in many different contexts. Modeling the coevolution of a diverse virus¿host ensemble is a difficult task, given the dimensionality and multi parametric nature of a standard continuous approximation. Here, we take a different approach, by using a neutral, toy model of host¿phage interactions on a spatial lattice. Each individual is represented by a bit string (a digital genome) but all strings in each class (i.e. hosts or phages) share the same sets of parameters. A matching allele model of phage-virus recognition rule is enough to generate a complex, diverse ecosystem with heterogeneous patterns of interaction and nestedness, provided that interactions take place under a spatially constrained setting. It is found that nestedness seems to be an emergent property of the co-evolutionary dynamics. Our results indicate that the enhanced diversity resulting from localized interactions strongly promotes the presence of nested infection matrices. es_ES
dc.description.sponsorship The authors would like to thank the members of the Complex Systems Lab and our colleagues at the Santa Fe Institute for fruitful discussions. This work has been supported by the Botin Foundation by Banco Santander through its Santander Universities Global Division. This work was supported by the grants BFU2015-65037-P (S.F.E.) and FIS2016-77447-R (S.V.) from Spain Ministerio de Economia, Industria y Competitividad, AEI/MINEICO/FEDER and UE. The authors also thank the Santa Fe Institute, wheremost of this work was done es_ES
dc.language Inglés es_ES
dc.publisher Oxford University Press es_ES
dc.relation.ispartof Virus Evolution es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Nested networks es_ES
dc.subject Coevolution es_ES
dc.subject Virus host interactions es_ES
dc.subject Matching allele dynamics es_ES
dc.title Spatially-induced nestedness in a neutral model of phage-bacteria networks es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1093/ve/vex021 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//BFU2015-65037-P/ES/EVOLUCION DE VIRUS EN HUESPEDES CON SUSCEPTIBILIDAD VARIABLE: CONSECUENCIAS EN EFICACIA Y VIRULENCIA DE CAMBIOS EN LAS REDES INTERACTOMICAS DE PROTEINAS VIRUS-HUESPED/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//FIS2016-77447-R/ES/PREDICCION DE INNOVACION TECNOLOGICA EN REDES DE CULTUROMICA/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes es_ES
dc.description.bibliographicCitation Valverde, S.; Elena Fito, SF.; Solé, R. (2017). Spatially-induced nestedness in a neutral model of phage-bacteria networks. Virus Evolution. 3(2):1-7. https://doi.org/10.1093/ve/vex021 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1093/ve/vex021 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 7 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 3 es_ES
dc.description.issue 2 es_ES
dc.identifier.eissn 2057-1577 es_ES
dc.identifier.pmid 28852574 es_ES
dc.identifier.pmcid PMC5570086 es_ES
dc.relation.pasarela S\357607 es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Ashby, B., & Boots, M. (2017). Multi-mode fluctuating selection in host-parasite coevolution. Ecology Letters, 20(3), 357-365. doi:10.1111/ele.12734 es_ES
dc.description.references Atmar, W., & Patterson, B. D. (1993). The measure of order and disorder in the distribution of species in fragmented habitat. Oecologia, 96(3), 373-382. doi:10.1007/bf00317508 es_ES
dc.description.references Bangham, J., Obbard, D. J., Kim, K.-W., Haddrill, P. R., & Jiggins, F. M. (2007). The age and evolution of an antiviral resistance mutation in Drosophila melanogaster. Proceedings of the Royal Society B: Biological Sciences, 274(1621), 2027-2034. doi:10.1098/rspb.2007.0611 es_ES
dc.description.references Bastolla, U., Fortuna, M. A., Pascual-García, A., Ferrera, A., Luque, B., & Bascompte, J. (2009). The architecture of mutualistic networks minimizes competition and increases biodiversity. Nature, 458(7241), 1018-1020. doi:10.1038/nature07950 es_ES
dc.description.references Beckett, S. J., & Williams, H. T. P. (2013). Coevolutionary diversification creates nested-modular structure in phage–bacteria interaction networks. Interface Focus, 3(6), 20130033. doi:10.1098/rsfs.2013.0033 es_ES
dc.description.references Bohannan, B. J. M., & Lenski, R. E. (2000). Linking genetic change to community evolution: insights from studies of bacteria and bacteriophage. Ecology Letters, 3(4), 362-377. doi:10.1046/j.1461-0248.2000.00161.x es_ES
dc.description.references Flor, H. H. (1956). The Complementary Genic Systems in Flax and Flax Rust. Advances in Genetics, 29-54. doi:10.1016/s0065-2660(08)60498-8 es_ES
dc.description.references Flores, C. O., Meyer, J. R., Valverde, S., Farr, L., & Weitz, J. S. (2011). Statistical structure of host-phage interactions. Proceedings of the National Academy of Sciences, 108(28), E288-E297. doi:10.1073/pnas.1101595108 es_ES
dc.description.references Flores, C. O., Valverde, S., & Weitz, J. S. (2012). Multi-scale structure and geographic drivers of cross-infection within marine bacteria and phages. The ISME Journal, 7(3), 520-532. doi:10.1038/ismej.2012.135 es_ES
dc.description.references Specificity versus detectable polymorphism in host–parasite genetics. (1993). Proceedings of the Royal Society of London. Series B: Biological Sciences, 254(1341), 191-197. doi:10.1098/rspb.1993.0145 es_ES
dc.description.references Galeano, J., Pastor, J. M., & Iriondo, J. M. (2009). Weighted-Interaction Nestedness Estimator (WINE): A new estimator to calculate over frequency matrices. Environmental Modelling & Software, 24(11), 1342-1346. doi:10.1016/j.envsoft.2009.05.014 es_ES
dc.description.references Haerter, J. O., Mitarai, N., & Sneppen, K. (2014). Phage and bacteria support mutual diversity in a narrowing staircase of coexistence. The ISME Journal, 8(11), 2317-2326. doi:10.1038/ismej.2014.80 es_ES
dc.description.references Hillung, J., Cuevas, J. M., Valverde, S., & Elena, S. F. (2014). EXPERIMENTAL EVOLUTION OF AN EMERGING PLANT VIRUS IN HOST GENOTYPES THAT DIFFER IN THEIR SUSCEPTIBILITY TO INFECTION. Evolution, 68(9), 2467-2480. doi:10.1111/evo.12458 es_ES
dc.description.references Jover, L. F., Cortez, M. H., & Weitz, J. S. (2013). Mechanisms of multi-strain coexistence in host–phage systems with nested infection networks. Journal of Theoretical Biology, 332, 65-77. doi:10.1016/j.jtbi.2013.04.011 es_ES
dc.description.references Jover, L. F., Flores, C. O., Cortez, M. H., & Weitz, J. S. (2015). Multiple regimes of robust patterns between network structure and biodiversity. Scientific Reports, 5(1). doi:10.1038/srep17856 es_ES
dc.description.references Korytowski, D. A., & Smith, H. L. (2014). How nested and monogamous infection networks in host-phage communities come to be. Theoretical Ecology, 8(1), 111-120. doi:10.1007/s12080-014-0236-6 es_ES
dc.description.references Koskella, B., & Brockhurst, M. A. (2014). Bacteria–phage coevolution as a driver of ecological and evolutionary processes in microbial communities. FEMS Microbiology Reviews, 38(5), 916-931. doi:10.1111/1574-6976.12072 es_ES
dc.description.references MAY, R. M. (1972). Will a Large Complex System be Stable? Nature, 238(5364), 413-414. doi:10.1038/238413a0 es_ES
dc.description.references Montoya, J. M., Pimm, S. L., & Solé, R. V. (2006). Ecological networks and their fragility. Nature, 442(7100), 259-264. doi:10.1038/nature04927 es_ES
dc.description.references Mouillot, D., Krasnov, B. R., & Poulin, R. (2008). HIGH INTERVALITY EXPLAINED BY PHYLOGENETIC CONSTRAINTS IN HOST–PARASITE WEBS. Ecology, 89(7), 2043-2051. doi:10.1890/07-1241.1 es_ES
dc.description.references Poulin, R., & Guégan, J.-F. (2000). Nestedness, anti-nestedness, and the relationship between prevalence and intensity in ectoparasite assemblages of marine fish: a spatial model of species coexistence. International Journal for Parasitology, 30(11), 1147-1152. doi:10.1016/s0020-7519(00)00102-8 es_ES
dc.description.references Staniczenko, P. P. A., Kopp, J. C., & Allesina, S. (2013). The ghost of nestedness in ecological networks. Nature Communications, 4(1). doi:10.1038/ncomms2422 es_ES
dc.description.references Suttle, C. A. (2005). Viruses in the sea. Nature, 437(7057), 356-361. doi:10.1038/nature04160 es_ES
dc.description.references Thompson, J. N., & Burdon, J. J. (1992). Gene-for-gene coevolution between plants and parasites. Nature, 360(6400), 121-125. doi:10.1038/360121a0 es_ES
dc.description.references VAZQUEZ, D. P., POULIN, R., KRASNOV, B. R., & SHENBROT, G. I. (2005). Species abundance and the distribution of specialization in host-parasite interaction networks. Journal of Animal Ecology, 74(5), 946-955. doi:10.1111/j.1365-2656.2005.00992.x es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem