Mostrar el registro sencillo del ítem
dc.contributor.author | Valverde, Sergi | es_ES |
dc.contributor.author | ELENA FITO, SANTIAGO FCO | es_ES |
dc.contributor.author | Solé, Ricard | es_ES |
dc.date.accessioned | 2020-11-05T04:32:24Z | |
dc.date.available | 2020-11-05T04:32:24Z | |
dc.date.issued | 2017-08-02 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/154094 | |
dc.description.abstract | [EN] Ecological networks, both displaying mutualistic or antagonistic interactions, seem to share common structural traits: the presence of nestedness and modularity. A variety of model approaches and hypothesis have been formulated concerning the significance and implications of these properties. In phage-bacteria bipartite infection networks, nestedness seems to be the rule in many different contexts. Modeling the coevolution of a diverse virus¿host ensemble is a difficult task, given the dimensionality and multi parametric nature of a standard continuous approximation. Here, we take a different approach, by using a neutral, toy model of host¿phage interactions on a spatial lattice. Each individual is represented by a bit string (a digital genome) but all strings in each class (i.e. hosts or phages) share the same sets of parameters. A matching allele model of phage-virus recognition rule is enough to generate a complex, diverse ecosystem with heterogeneous patterns of interaction and nestedness, provided that interactions take place under a spatially constrained setting. It is found that nestedness seems to be an emergent property of the co-evolutionary dynamics. Our results indicate that the enhanced diversity resulting from localized interactions strongly promotes the presence of nested infection matrices. | es_ES |
dc.description.sponsorship | The authors would like to thank the members of the Complex Systems Lab and our colleagues at the Santa Fe Institute for fruitful discussions. This work has been supported by the Botin Foundation by Banco Santander through its Santander Universities Global Division. This work was supported by the grants BFU2015-65037-P (S.F.E.) and FIS2016-77447-R (S.V.) from Spain Ministerio de Economia, Industria y Competitividad, AEI/MINEICO/FEDER and UE. The authors also thank the Santa Fe Institute, wheremost of this work was done | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Oxford University Press | es_ES |
dc.relation.ispartof | Virus Evolution | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Nested networks | es_ES |
dc.subject | Coevolution | es_ES |
dc.subject | Virus host interactions | es_ES |
dc.subject | Matching allele dynamics | es_ES |
dc.title | Spatially-induced nestedness in a neutral model of phage-bacteria networks | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1093/ve/vex021 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//BFU2015-65037-P/ES/EVOLUCION DE VIRUS EN HUESPEDES CON SUSCEPTIBILIDAD VARIABLE: CONSECUENCIAS EN EFICACIA Y VIRULENCIA DE CAMBIOS EN LAS REDES INTERACTOMICAS DE PROTEINAS VIRUS-HUESPED/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//FIS2016-77447-R/ES/PREDICCION DE INNOVACION TECNOLOGICA EN REDES DE CULTUROMICA/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes | es_ES |
dc.description.bibliographicCitation | Valverde, S.; Elena Fito, SF.; Solé, R. (2017). Spatially-induced nestedness in a neutral model of phage-bacteria networks. Virus Evolution. 3(2):1-7. https://doi.org/10.1093/ve/vex021 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1093/ve/vex021 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 7 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 3 | es_ES |
dc.description.issue | 2 | es_ES |
dc.identifier.eissn | 2057-1577 | es_ES |
dc.identifier.pmid | 28852574 | es_ES |
dc.identifier.pmcid | PMC5570086 | es_ES |
dc.relation.pasarela | S\357607 | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Ashby, B., & Boots, M. (2017). Multi-mode fluctuating selection in host-parasite coevolution. Ecology Letters, 20(3), 357-365. doi:10.1111/ele.12734 | es_ES |
dc.description.references | Atmar, W., & Patterson, B. D. (1993). The measure of order and disorder in the distribution of species in fragmented habitat. Oecologia, 96(3), 373-382. doi:10.1007/bf00317508 | es_ES |
dc.description.references | Bangham, J., Obbard, D. J., Kim, K.-W., Haddrill, P. R., & Jiggins, F. M. (2007). The age and evolution of an antiviral resistance mutation in Drosophila melanogaster. Proceedings of the Royal Society B: Biological Sciences, 274(1621), 2027-2034. doi:10.1098/rspb.2007.0611 | es_ES |
dc.description.references | Bastolla, U., Fortuna, M. A., Pascual-García, A., Ferrera, A., Luque, B., & Bascompte, J. (2009). The architecture of mutualistic networks minimizes competition and increases biodiversity. Nature, 458(7241), 1018-1020. doi:10.1038/nature07950 | es_ES |
dc.description.references | Beckett, S. J., & Williams, H. T. P. (2013). Coevolutionary diversification creates nested-modular structure in phage–bacteria interaction networks. Interface Focus, 3(6), 20130033. doi:10.1098/rsfs.2013.0033 | es_ES |
dc.description.references | Bohannan, B. J. M., & Lenski, R. E. (2000). Linking genetic change to community evolution: insights from studies of bacteria and bacteriophage. Ecology Letters, 3(4), 362-377. doi:10.1046/j.1461-0248.2000.00161.x | es_ES |
dc.description.references | Flor, H. H. (1956). The Complementary Genic Systems in Flax and Flax Rust. Advances in Genetics, 29-54. doi:10.1016/s0065-2660(08)60498-8 | es_ES |
dc.description.references | Flores, C. O., Meyer, J. R., Valverde, S., Farr, L., & Weitz, J. S. (2011). Statistical structure of host-phage interactions. Proceedings of the National Academy of Sciences, 108(28), E288-E297. doi:10.1073/pnas.1101595108 | es_ES |
dc.description.references | Flores, C. O., Valverde, S., & Weitz, J. S. (2012). Multi-scale structure and geographic drivers of cross-infection within marine bacteria and phages. The ISME Journal, 7(3), 520-532. doi:10.1038/ismej.2012.135 | es_ES |
dc.description.references | Specificity versus detectable polymorphism in host–parasite genetics. (1993). Proceedings of the Royal Society of London. Series B: Biological Sciences, 254(1341), 191-197. doi:10.1098/rspb.1993.0145 | es_ES |
dc.description.references | Galeano, J., Pastor, J. M., & Iriondo, J. M. (2009). Weighted-Interaction Nestedness Estimator (WINE): A new estimator to calculate over frequency matrices. Environmental Modelling & Software, 24(11), 1342-1346. doi:10.1016/j.envsoft.2009.05.014 | es_ES |
dc.description.references | Haerter, J. O., Mitarai, N., & Sneppen, K. (2014). Phage and bacteria support mutual diversity in a narrowing staircase of coexistence. The ISME Journal, 8(11), 2317-2326. doi:10.1038/ismej.2014.80 | es_ES |
dc.description.references | Hillung, J., Cuevas, J. M., Valverde, S., & Elena, S. F. (2014). EXPERIMENTAL EVOLUTION OF AN EMERGING PLANT VIRUS IN HOST GENOTYPES THAT DIFFER IN THEIR SUSCEPTIBILITY TO INFECTION. Evolution, 68(9), 2467-2480. doi:10.1111/evo.12458 | es_ES |
dc.description.references | Jover, L. F., Cortez, M. H., & Weitz, J. S. (2013). Mechanisms of multi-strain coexistence in host–phage systems with nested infection networks. Journal of Theoretical Biology, 332, 65-77. doi:10.1016/j.jtbi.2013.04.011 | es_ES |
dc.description.references | Jover, L. F., Flores, C. O., Cortez, M. H., & Weitz, J. S. (2015). Multiple regimes of robust patterns between network structure and biodiversity. Scientific Reports, 5(1). doi:10.1038/srep17856 | es_ES |
dc.description.references | Korytowski, D. A., & Smith, H. L. (2014). How nested and monogamous infection networks in host-phage communities come to be. Theoretical Ecology, 8(1), 111-120. doi:10.1007/s12080-014-0236-6 | es_ES |
dc.description.references | Koskella, B., & Brockhurst, M. A. (2014). Bacteria–phage coevolution as a driver of ecological and evolutionary processes in microbial communities. FEMS Microbiology Reviews, 38(5), 916-931. doi:10.1111/1574-6976.12072 | es_ES |
dc.description.references | MAY, R. M. (1972). Will a Large Complex System be Stable? Nature, 238(5364), 413-414. doi:10.1038/238413a0 | es_ES |
dc.description.references | Montoya, J. M., Pimm, S. L., & Solé, R. V. (2006). Ecological networks and their fragility. Nature, 442(7100), 259-264. doi:10.1038/nature04927 | es_ES |
dc.description.references | Mouillot, D., Krasnov, B. R., & Poulin, R. (2008). HIGH INTERVALITY EXPLAINED BY PHYLOGENETIC CONSTRAINTS IN HOST–PARASITE WEBS. Ecology, 89(7), 2043-2051. doi:10.1890/07-1241.1 | es_ES |
dc.description.references | Poulin, R., & Guégan, J.-F. (2000). Nestedness, anti-nestedness, and the relationship between prevalence and intensity in ectoparasite assemblages of marine fish: a spatial model of species coexistence. International Journal for Parasitology, 30(11), 1147-1152. doi:10.1016/s0020-7519(00)00102-8 | es_ES |
dc.description.references | Staniczenko, P. P. A., Kopp, J. C., & Allesina, S. (2013). The ghost of nestedness in ecological networks. Nature Communications, 4(1). doi:10.1038/ncomms2422 | es_ES |
dc.description.references | Suttle, C. A. (2005). Viruses in the sea. Nature, 437(7057), 356-361. doi:10.1038/nature04160 | es_ES |
dc.description.references | Thompson, J. N., & Burdon, J. J. (1992). Gene-for-gene coevolution between plants and parasites. Nature, 360(6400), 121-125. doi:10.1038/360121a0 | es_ES |
dc.description.references | VAZQUEZ, D. P., POULIN, R., KRASNOV, B. R., & SHENBROT, G. I. (2005). Species abundance and the distribution of specialization in host-parasite interaction networks. Journal of Animal Ecology, 74(5), 946-955. doi:10.1111/j.1365-2656.2005.00992.x | es_ES |