Mostrar el registro sencillo del ítem
dc.contributor.author | Cuesta Frau, David | es_ES |
dc.contributor.author | Novák, Daniel | es_ES |
dc.contributor.author | Burda, Vaclav | es_ES |
dc.contributor.author | Abasolo, Daniel | es_ES |
dc.contributor.author | Adjei, Tricia | es_ES |
dc.contributor.author | Varela, Manuel | es_ES |
dc.contributor.author | Vargas, Borja | es_ES |
dc.contributor.author | Mraz, Milos | es_ES |
dc.contributor.author | Kavalkova, Petra | es_ES |
dc.contributor.author | Benes, Marek | es_ES |
dc.contributor.author | Haluzik, Martin | es_ES |
dc.date.accessioned | 2020-11-05T04:32:38Z | |
dc.date.available | 2020-11-05T04:32:38Z | |
dc.date.issued | 2019-02-14 | es_ES |
dc.identifier.issn | 1076-2787 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/154097 | |
dc.description.abstract | [EN] Diabetes is a disease of great and rising prevalence, with the obesity epidemic being a significant contributing risk factor. Duodenal¿jejunal bypass liner (DJBL) is a reversible implant that mimics the effects of more aggressive surgical procedures, such as gastric bypass, to induce weight loss. We hypothesized that DJBL also influences the glucose dynamics in type II diabetes, based on the induced changes already demonstrated in other physiological characteristics and parameters. In order to assess the validity of this assumption, we conducted a quantitative analysis based on several nonlinear algorithms (Lempel¿Ziv Complexity, Sample Entropy, Permutation Entropy, and modified Permutation Entropy), well suited to the characterization of biomedical time series. We applied them to glucose records drawn from two extreme cases available of DJBL implantation: before and after 10 months. The results confirmed the hypothesis and an accuracy of 86.4% was achieved with modified Permutation Entropy. Other metrics also yielded significant classification accuracy results, all above 70%, provided a suitable parameter configuration was chosen. With the Leave¿One¿Out method, the results were very similar, between 72% and 82% classification accuracy. There was also a decrease in entropy of glycaemia records during the time interval studied. These findings provide a solid foundation to assess how glucose metabolism may be influenced by DJBL implantation and opens a new line of research in this field. | es_ES |
dc.description.sponsorship | The Czech clinical partners were supported by DRO IKEM 000023001 and RVO VFN 64165. The Czech technical partners were supported by Research Centre for Informatics grant numbers CZ.02.1.01/0.0/16 - 019/0000765 and SGS16/231/OHK3/3T/13-Support of interactive approaches to biomedical data acquisition and processing. No funding was received to support this research work by the Spanish and British partners | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | John Wiley & Sons | es_ES |
dc.relation.ispartof | Complexity | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject.classification | ARQUITECTURA Y TECNOLOGIA DE COMPUTADORES | es_ES |
dc.title | Influence of Duodenal-Jejunal Implantation on Glucose Dynamics: A Pilot Study Using Different Nonlinear Methods | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1155/2019/6070518 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/CVUT//CZ.02.1.01%2F0.0%2F0.0%2F16-019%2F0000765/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/CVUT//SGS16%2F231%2FOHK3%2F3T%2F13/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MZCR//DRO IKEM 000023001/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MZCR//RVO VFN 64165/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors | es_ES |
dc.description.bibliographicCitation | Cuesta Frau, D.; Novák, D.; Burda, V.; Abasolo, D.; Adjei, T.; Varela, M.; Vargas, B.... (2019). Influence of Duodenal-Jejunal Implantation on Glucose Dynamics: A Pilot Study Using Different Nonlinear Methods. Complexity. 2019. https://doi.org/10.1155/2019/6070518 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1155/2019/6070518 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 2019 | es_ES |
dc.relation.pasarela | S\401347 | es_ES |
dc.contributor.funder | Czech Technical University in Prague | es_ES |
dc.contributor.funder | Ministry of Health, República Checa | es_ES |
dc.description.references | Kassirer, J. P., & Angell, M. (1998). Losing Weight — An Ill-Fated New Year’s Resolution. New England Journal of Medicine, 338(1), 52-54. doi:10.1056/nejm199801013380109 | es_ES |
dc.description.references | Van Gaal, L., & Dirinck, E. (2016). Pharmacological Approaches in the Treatment and Maintenance of Weight Loss. Diabetes Care, 39(Supplement 2), S260-S267. doi:10.2337/dcs15-3016 | es_ES |
dc.description.references | De Jonge, C., Rensen, S. S., Verdam, F. J., Vincent, R. P., Bloom, S. R., Buurman, W. A., … Greve, J. W. M. (2015). Impact of Duodenal-Jejunal Exclusion on Satiety Hormones. Obesity Surgery, 26(3), 672-678. doi:10.1007/s11695-015-1889-y | es_ES |
dc.description.references | Muñoz, R., Dominguez, A., Muñoz, F., Muñoz, C., Slako, M., Turiel, D., … Escalona, A. (2013). Baseline glycated hemoglobin levels are associated with duodenal-jejunal bypass liner-induced weight loss in obese patients. Surgical Endoscopy, 28(4), 1056-1062. doi:10.1007/s00464-013-3283-y | es_ES |
dc.description.references | Ogata, H., Tokuyama, K., Nagasaka, S., Ando, A., Kusaka, I., Sato, N., … Yamamoto, Y. (2007). Long-range Correlated Glucose Fluctuations in Diabetes. Methods of Information in Medicine, 46(02), 222-226. doi:10.1055/s-0038-1625411 | es_ES |
dc.description.references | Rodríguez de Castro, C., Vigil, L., Vargas, B., García Delgado, E., García Carretero, R., Ruiz-Galiana, J., & Varela, M. (2016). Glucose time series complexity as a predictor of type 2 diabetes. Diabetes/Metabolism Research and Reviews, 33(2), e2831. doi:10.1002/dmrr.2831 | es_ES |
dc.description.references | DeFronzo, R. A. (2004). Pathogenesis of type 2 diabetes mellitus. Medical Clinics of North America, 88(4), 787-835. doi:10.1016/j.mcna.2004.04.013 | es_ES |
dc.description.references | Zhang, X.-S., Roy, R. J., & Jensen, E. W. (2001). EEG complexity as a measure of depth of anesthesia for patients. IEEE Transactions on Biomedical Engineering, 48(12), 1424-1433. doi:10.1109/10.966601 | es_ES |
dc.description.references | Bandt, C., & Pompe, B. (2002). Permutation Entropy: A Natural Complexity Measure for Time Series. Physical Review Letters, 88(17). doi:10.1103/physrevlett.88.174102 | es_ES |
dc.description.references | Bian, C., Qin, C., Ma, Q. D. Y., & Shen, Q. (2012). Modified permutation-entropy analysis of heartbeat dynamics. Physical Review E, 85(2). doi:10.1103/physreve.85.021906 | es_ES |
dc.description.references | Zhao, L., Wei, S., Zhang, C., Zhang, Y., Jiang, X., Liu, F., & Liu, C. (2015). Determination of Sample Entropy and Fuzzy Measure Entropy Parameters for Distinguishing Congestive Heart Failure from Normal Sinus Rhythm Subjects. Entropy, 17(12), 6270-6288. doi:10.3390/e17096270 | es_ES |
dc.description.references | Weinstein, R. L., Schwartz, S. L., Brazg, R. L., Bugler, J. R., Peyser, T. A., & McGarraugh, G. V. (2007). Accuracy of the 5-Day FreeStyle Navigator Continuous Glucose Monitoring System: Comparison with frequent laboratory reference measurements. Diabetes Care, 30(5), 1125-1130. doi:10.2337/dc06-1602 | es_ES |
dc.description.references | Weber, C., & Schnell, O. (2009). The Assessment of Glycemic Variability and Its Impact on Diabetes-Related Complications: An Overview. Diabetes Technology & Therapeutics, 11(10), 623-633. doi:10.1089/dia.2009.0043 | es_ES |
dc.description.references | Cuesta-Frau, D., Miró-Martínez, P., Oltra-Crespo, S., Jordán-Núñez, J., Vargas, B., González, P., & Varela-Entrecanales, M. (2018). Model Selection for Body Temperature Signal Classification Using Both Amplitude and Ordinality-Based Entropy Measures. Entropy, 20(11), 853. doi:10.3390/e20110853 | es_ES |
dc.description.references | Cuesta–Frau, D., Miró–Martínez, P., Oltra–Crespo, S., Jordán–Núñez, J., Vargas, B., & Vigil, L. (2018). Classification of glucose records from patients at diabetes risk using a combined permutation entropy algorithm. Computer Methods and Programs in Biomedicine, 165, 197-204. doi:10.1016/j.cmpb.2018.08.018 | es_ES |
dc.description.references | Cuesta–Frau, D., Varela–Entrecanales, M., Molina–Picó, A., & Vargas, B. (2018). Patterns with Equal Values in Permutation Entropy: Do They Really Matter for Biosignal Classification? Complexity, 2018, 1-15. doi:10.1155/2018/1324696 | es_ES |
dc.description.references | Mayer, C. C., Bachler, M., Hörtenhuber, M., Stocker, C., Holzinger, A., & Wassertheurer, S. (2014). Selection of entropy-measure parameters for knowledge discovery in heart rate variability data. BMC Bioinformatics, 15(S6). doi:10.1186/1471-2105-15-s6-s2 | es_ES |
dc.description.references | Sheng Lu, Xinnian Chen, Kanters, J. K., Solomon, I. C., & Chon, K. H. (2008). Automatic Selection of the Threshold Value $r$ for Approximate Entropy. IEEE Transactions on Biomedical Engineering, 55(8), 1966-1972. doi:10.1109/tbme.2008.919870 | es_ES |
dc.description.references | Crenier, L., Lytrivi, M., Van Dalem, A., Keymeulen, B., & Corvilain, B. (2016). Glucose Complexity Estimates Insulin Resistance in Either Nondiabetic Individuals or in Type 1 Diabetes. The Journal of Clinical Endocrinology & Metabolism, 101(4), 1490-1497. doi:10.1210/jc.2015-4035 | es_ES |
dc.description.references | Cuesta, D., Varela, M., Miró, P., Galdós, P., Abásolo, D., Hornero, R., & Aboy, M. (2007). Predicting survival in critical patients by use of body temperature regularity measurement based on approximate entropy. Medical & Biological Engineering & Computing, 45(7), 671-678. doi:10.1007/s11517-007-0200-3 | es_ES |
dc.description.references | Chen, W., Zhuang, J., Yu, W., & Wang, Z. (2009). Measuring complexity using FuzzyEn, ApEn, and SampEn. Medical Engineering & Physics, 31(1), 61-68. doi:10.1016/j.medengphy.2008.04.005 | es_ES |
dc.description.references | Xiao-Feng, L., & Yue, W. (2009). Fine-grained permutation entropy as a measure of natural complexity for time series. Chinese Physics B, 18(7), 2690-2695. doi:10.1088/1674-1056/18/7/011 | es_ES |
dc.description.references | Fadlallah, B., Chen, B., Keil, A., & Príncipe, J. (2013). Weighted-permutation entropy: A complexity measure for time series incorporating amplitude information. Physical Review E, 87(2). doi:10.1103/physreve.87.022911 | es_ES |