Mostrar el registro sencillo del ítem
dc.contributor.author | Albert, A. | es_ES |
dc.contributor.author | Andre, M. | es_ES |
dc.contributor.author | Anghinolfi, M. | es_ES |
dc.contributor.author | Ardid Ramírez, Miguel | es_ES |
dc.contributor.author | Aubert, J.J. | es_ES |
dc.contributor.author | Aublin, J. | es_ES |
dc.contributor.author | Avgitas, T. | es_ES |
dc.contributor.author | Baret, B. | es_ES |
dc.contributor.author | Barrios-Marti, J. | es_ES |
dc.contributor.author | Basa, S. | es_ES |
dc.contributor.author | Belhorma, B. | es_ES |
dc.contributor.author | Bertin, V. | es_ES |
dc.contributor.author | Biagi, S. | es_ES |
dc.contributor.author | Bormuth, R. | es_ES |
dc.contributor.author | Boumaaza, J. | es_ES |
dc.contributor.author | Martínez Mora, Juan Antonio | es_ES |
dc.contributor.author | Saldaña-Coscollar, María | es_ES |
dc.date.accessioned | 2020-11-05T04:33:36Z | |
dc.date.available | 2020-11-05T04:33:36Z | |
dc.date.issued | 2019-01-10 | es_ES |
dc.identifier.issn | 0004-637X | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/154111 | |
dc.description.abstract | [EN] Astrophysical sources of gravitational waves, such as binary neutron star and black hole mergers or core-collapse supernovae, can drive relativistic outflows, giving rise to non-thermal high-energy emission. High-energy neutrinos are signatures of such outflows. The detection of gravitational waves and high-energy neutrinos from common sources could help establish the connection between the dynamics of the progenitor and the properties of the out¿ow. We searched for associated emission of gravitational waves and high-energy neutrinos from astrophysical transients with minimal assumptions using data from Advanced LIGO from its first observing run O1, and data from the ANTARES and IceCube neutrino observatories from the same time period. We focused on candidate events whose astrophysical origins could not be determined from a single messenger. We found no significant coincident candidate, which we used to constrain the rate density of astrophysical sources dependent on their gravitational-wave and neutrino emission processes. | es_ES |
dc.description.sponsorship | The ANTARES Collaboration acknowledge the financial support of the funding agencies: Centre National de la Recherche Scientifique (CNRS), Commissariat a l'energie atomique et aux energies alternatives (CEA), Commission Europeenne (FEDER fund and Marie Curie Program), Institut Universitaire de France (IUF), IdEx program and UnivEarthS Labex program at Sorbonne Paris Cite (ANR-10-LABX-0023 and ANR-11-IDEX-0005-02), Labex OCEVU (ANR-11-LABX-0060) and the A*MIDEX project (ANR-11-IDEX-0001-02), Region Ile-de-France (DIM-ACAV), Region Alsace (contrat CPER), Region Provence-Alpes-Cote d'Azur, Departement du Var and Ville de La Seyne-sur-Mer, France; Bundesministerium fur Bildung und Forschung (BMBF), Germany; Istituto Nazionale di Fisica Nucleare (INFN), Italy; Nederlandse organisatie voor Wetenschappelijk Onderzoek (NWO), the Netherlands; Council of the President of the Russian Federation for young scientists and leading scientific schools supporting grants, Russia; National Authority for Scientific Research (ANCS), Romania; Ministerio de Economia y Competitividad (MINECO): Plan Estatal de Investigacion (refs. FPA2015-65150-C3-1-P, -2-P and -3-P, (MINECO/FEDER)), Severo Ochoa Centre of Excellence and MultiDark Consolider (MINECO), and Prometeo and Grisolia programs (Generalitat Valenciana), Spain; Ministry of Higher Education, Scientific Research and Professional Training, Morocco. We also acknowledge the technical support of Ifremer, AIM and Foselev Marine for the sea operation and the CC-IN2P3 for the computing facilities. The IceCube Collaboration gratefully acknowledges the following support: USA-U.S. National Science Foundation-Office of Polar Programs, U.S. National Science Foundation-Physics Division, Wisconsin Alumni Research Foundation, Center for High Throughput Computing (CHTC) at the University of Wisconsin-Madison, Open Science Grid (OSG), Extreme Science and Engineering Discovery Environment (XSEDE), U.S. Department of Energy-National Energy Research Scientific Computing Center, Particle astrophysics research computing center at the University of Maryland, Institute for Cyber-Enabled Research at Michigan State University, and Astroparticle physics computational facility at Marquette University; Belgium-Funds for Scientific Research (FRS-FNRS and FWO), FWO Odysseus and Big Science programmes, and Belgian Federal Science Policy Office (Belspo); Germany-Bundesministerium fur Bildung und Forschung (BMBF), Deutsche Forschungsgemeinschaft (DFG), Helmholtz Alliance for Astroparticle Physics (HAP), Initiative and Networking Fund of the Helmholtz Association, Deutsches Elektronen Synchrotron (DESY), and High Performance Computing cluster of the RWTH Aachen; Sweden-Swedish Research Council, Swedish Polar Research Secretariat, Swedish National Infrastructure for Computing (SNIC), and Knut and Alice Wallenberg Foundation; Australia-Australian Research Council; Canada-Natural Sciences and Engineering Research Council of Canada, Calcul Quebec, Compute Ontario, Canada Foundation for Innovation, WestGrid, and Compute Canada; Denmark-Villum Fonden, Danish National Research Foundation (DNRF); New Zealand-Marsden Fund; Japan-Japan Society for Promotion of Science (JSPS) and Institute for Global Prominent Research (IGPR) of Chiba University; Korea-National Research Foundation of Korea (NRF); Switzerland-Swiss National Science Foundation (SNSF). The LIGO Scientific Collaboration and the Virgo Collaboration gratefully acknowledge the support of the United States National Science Foundation (NSF) for the construction and operation of the LIGO Laboratory and Advanced LIGO as well as the Science and Technology Facilities Council (STFC) of the United Kingdom, the Max-Planck-Society (MPS), and the State of Niedersachsen/Germany for support of the construction of Advanced LIGO and construction and operation of the GEO600 detector. Additional support for Advanced LIGO was provided by the Australian Research Council, etc. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | American Astronomical Society | es_ES |
dc.relation.ispartof | The Astrophysical Journal | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Gravitational waves | es_ES |
dc.subject | Neutrinos | es_ES |
dc.subject.classification | FISICA APLICADA | es_ES |
dc.title | Search for Multimessenger Sources of Gravitational Waves and High-energy Neutrinos with Advanced LIGO during Its First Observing Run, ANTARES, and IceCube | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3847/1538-4357/aaf21d | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//FPA2015-65150-C3-1-P/ES/PARTICIPACION DEL IFIC EN ANTARES, KM3NET-ARCA%2FORCA Y PDG/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/ANR//ANR-11-LABX-0060/FR/Origines, Constituants et EVolution de l'Univers/OCEVU/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/ANR//ANR-11-IDEX-0005/FR/Université Sorbonne Paris Cité/USPC/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/ANR//ANR-11-IDEX-0001/FR/INITIATIVE D'EXCELLENCE AIX MARSEILLE UNIVERSITE/Amidex/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/ANR//ANR-10-LABX-0023/FR/Earth - Planets - Universe: observation, modeling, transfer/UnivEarthS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//FPA2015-65150-C3-3-P/ES/PARTICIPACION DE LA UGR EN ANTARES, KM3NET-ARCA%2FORCA Y PDG/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//FPA2015-65150-C3-2-P/ES/PARTICIPACION DE LA UPV EN ANTARES Y KM3NET-ARCA%2FORCA/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI//FPA2017-90566-REDC/ES/RED CONSOLIDER MULTIDARK/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada | es_ES |
dc.description.bibliographicCitation | Albert, A.; Andre, M.; Anghinolfi, M.; Ardid Ramírez, M.; Aubert, J.; Aublin, J.; Avgitas, T.... (2019). Search for Multimessenger Sources of Gravitational Waves and High-energy Neutrinos with Advanced LIGO during Its First Observing Run, ANTARES, and IceCube. The Astrophysical Journal. 870(2):1-16. https://doi.org/10.3847/1538-4357/aaf21d | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3847/1538-4357/aaf21d | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 16 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 870 | es_ES |
dc.description.issue | 2 | es_ES |
dc.relation.pasarela | S\400012 | es_ES |
dc.contributor.funder | Royal Society, Reino Unido | es_ES |
dc.contributor.funder | Agence Nationale de la Recherche, Francia | es_ES |
dc.contributor.funder | Villum Foundation | es_ES |
dc.contributor.funder | Kavli Foundation | es_ES |
dc.contributor.funder | Leverhulme Trust | es_ES |
dc.contributor.funder | A*Midex Foundation | es_ES |
dc.contributor.funder | Max Planck Society | es_ES |
dc.contributor.funder | European Commission | es_ES |
dc.contributor.funder | Govern Illes Balears | es_ES |
dc.contributor.funder | Region Ile-de-France | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | U.S. Department of Energy | es_ES |
dc.contributor.funder | Conseil Régional d'Alsace | es_ES |
dc.contributor.funder | Australian Research Council | es_ES |
dc.contributor.funder | Danish National Research Foundation | es_ES |
dc.contributor.funder | Deutsche Forschungsgemeinschaft | es_ES |
dc.contributor.funder | National Science Centre, Polonia | es_ES |
dc.contributor.funder | Canada Foundation for Innovation | es_ES |
dc.contributor.funder | Université Sorbonne Paris Cité | es_ES |
dc.contributor.funder | Institut Universitaire de France | es_ES |
dc.contributor.funder | National Science Foundation, EEUU | es_ES |
dc.contributor.funder | Research Grant Council, Hong Kong | es_ES |
dc.contributor.funder | Swiss National Science Foundation | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Hungarian Scientific Research Fund | es_ES |
dc.contributor.funder | Knut and Alice Wallenberg Foundation | es_ES |
dc.contributor.funder | Belgian Federal Science Policy Office | es_ES |
dc.contributor.funder | National Research Foundation of Korea | es_ES |
dc.contributor.funder | Russian Foundation for Basic Research | es_ES |
dc.contributor.funder | Instituto Nazionale di Fisica Nucleare | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | Research Foundation Flanders | es_ES |
dc.contributor.funder | Ministry of Science and Technology, Taiwan | es_ES |
dc.contributor.funder | Fonds de la Recherche Scientifique, Belgica | es_ES |
dc.contributor.funder | Japan Society for the Promotion of Science | es_ES |
dc.contributor.funder | Conseil Régional Provence-Alpes-Côte d'Azur | es_ES |
dc.contributor.funder | National Natural Science Foundation of China | es_ES |
dc.contributor.funder | Helmholtz Association of German Research Centers | es_ES |
dc.contributor.funder | Netherlands Organization for Scientific Research | es_ES |
dc.contributor.funder | Département du Var and Ville de La Seyne-sur-Mer | es_ES |
dc.contributor.funder | National Authority for Scientific Research, Rumanía | es_ES |
dc.contributor.funder | Council of Scientific and Industrial Research, India | es_ES |
dc.contributor.funder | Bundesministerium für Bildung und Forschung, Alemania | es_ES |
dc.contributor.funder | Centre National de la Recherche Scientifique, Francia | es_ES |
dc.contributor.funder | Science and Technology Facilities Council, Reino Unido | es_ES |
dc.contributor.funder | Natural Sciences and Engineering Research Council of Canada | es_ES |
dc.contributor.funder | Council on grants of the President of the Russian Federation | es_ES |
dc.contributor.funder | Ministerio da Ciencia, Tecnologia, Inovacoes e Comunicacoes, Brasil | es_ES |
dc.contributor.funder | Commissariat à l'Énergie Atomique et aux Énergies Alternatives, Francia | es_ES |
dc.contributor.funder | Laboratoire d'Excellence OCEVU (Origines, Constituants & ÉVolution de l'Univers) | es_ES |
dc.contributor.funder | Ministère de l'Education Nationale, de la Formation professionnelle, de l'Enseignement Supérieur et de la Recherche Scientifique, Marruecos | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.description.references | The Pierre Auger Cosmic Ray Observatory. (2015). Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 798, 172-213. doi:10.1016/j.nima.2015.06.058 | es_ES |
dc.description.references | Aartsen, M. G., Abbasi, R., Abdou, Y., Ackermann, M., Adams, J., Aguilar, J. A., … Bai, X. (2013). First Observation of PeV-Energy Neutrinos with IceCube. Physical Review Letters, 111(2). doi:10.1103/physrevlett.111.021103 | es_ES |
dc.description.references | (2013). Evidence for High-Energy Extraterrestrial Neutrinos at the IceCube Detector. Science, 342(6161), 1242856-1242856. doi:10.1126/science.1242856 | es_ES |
dc.description.references | Aartsen, M. G., Ackermann, M., Adams, J., Aguilar, J. A., Ahlers, M., Ahrens, M., … Arlen, T. C. (2014). Multimessenger search for sources of gravitational waves and high-energy neutrinos: Initial results for LIGO-Virgo and IceCube. Physical Review D, 90(10). doi:10.1103/physrevd.90.102002 | es_ES |
dc.description.references | Aartsen, M. G., Ackermann, M., Adams, J., Aguilar, J. A., Ahlers, M., Ahrens, M., … Ansseau, I. (2017). The IceCube Neutrino Observatory: instrumentation and online systems. Journal of Instrumentation, 12(03), P03012-P03012. doi:10.1088/1748-0221/12/03/p03012 | es_ES |
dc.description.references | Aartsen, M. G., Ackermann, M., Adams, J., Aguilar, J. A., Ahlers, M., Ahrens, M., … Ansseau, I. (2017). The IceCube realtime alert system. Astroparticle Physics, 92, 30-41. doi:10.1016/j.astropartphys.2017.05.002 | es_ES |
dc.description.references | Aartsen, M. G., Abraham, K., Ackermann, M., Adams, J., Aguilar, J. A., Ahlers, M., … Anderson, T. (2017). All-sky Search for Time-integrated Neutrino Emission from Astrophysical Sources with 7 yr of IceCube Data. The Astrophysical Journal, 835(2), 151. doi:10.3847/1538-4357/835/2/151 | es_ES |
dc.description.references | Aartsen, M. G., Ackermann, M., Adams, J., Aguilar, J. A., Ahlers, M., Ahrens, M., … Anderson, T. (2017). Extending the Search for Muon Neutrinos Coincident with Gamma-Ray Bursts in IceCube Data. The Astrophysical Journal, 843(2), 112. doi:10.3847/1538-4357/aa7569 | es_ES |
dc.description.references | Abadie, J., Abbott, B. P., Abbott, R., Accadia, T., Acernese, F., Adhikari, R., … Amador Ceron, E. (2010). All-sky search for gravitational-wave bursts in the first joint LIGO-GEO-Virgo run. Physical Review D, 81(10). doi:10.1103/physrevd.81.102001 | es_ES |
dc.description.references | (2012). An absence of neutrinos associated with cosmic-ray acceleration in γ-ray bursts. Nature, 484(7394), 351-354. doi:10.1038/nature11068 | es_ES |
dc.description.references | Abbott, B. P., Abbott, R., Abbott, T. D., Abernathy, M. R., Acernese, F., Ackley, K., … Adhikari, R. X. (2016). Binary Black Hole Mergers in the First Advanced LIGO Observing Run. Physical Review X, 6(4). doi:10.1103/physrevx.6.041015 | es_ES |
dc.description.references | Abbott, B. P., Abbott, R., Abbott, T. D., Abernathy, M. R., Acernese, F., Ackley, K., … Adhikari, R. X. (2016). Observing gravitational-wave transient GW150914 with minimal assumptions. Physical Review D, 93(12). doi:10.1103/physrevd.93.122004 | es_ES |
dc.description.references | Abbott, B. P., Abbott, R., Abbott, T. D., Acernese, F., Ackley, K., Adams, C., … Adya, V. B. (2017). GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2. Physical Review Letters, 118(22). doi:10.1103/physrevlett.118.221101 | es_ES |
dc.description.references | Abbott, B. P., Abbott, R., Abbott, T. D., Acernese, F., Ackley, K., Adams, C., … Adya, V. B. (2017). GW170608: Observation of a 19 Solar-mass Binary Black Hole Coalescence. The Astrophysical Journal, 851(2), L35. doi:10.3847/2041-8213/aa9f0c | es_ES |
dc.description.references | Abbott, B. P., Abbott, R., Abbott, T. D., Acernese, F., Ackley, K., Adams, C., … Adya, V. B. (2017). GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence. Physical Review Letters, 119(14). doi:10.1103/physrevlett.119.141101 | es_ES |
dc.description.references | Abbott, B. P., Abbott, R., Abbott, T. D., Acernese, F., Ackley, K., Adams, C., … Adya, V. B. (2017). GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters, 119(16). doi:10.1103/physrevlett.119.161101 | es_ES |
dc.description.references | Abe, K., Haga, K., Hayato, Y., Ikeda, M., Iyogi, K., Kameda, J., … Nakahata, M. (2016). SEARCH FOR NEUTRINOS IN SUPER-KAMIOKANDE ASSOCIATED WITH GRAVITATIONAL-WAVE EVENTS GW150914 AND GW151226. The Astrophysical Journal, 830(1), L11. doi:10.3847/2041-8205/830/1/l11 | es_ES |
dc.description.references | Acernese, F., Agathos, M., Agatsuma, K., Aisa, D., Allemandou, N., Allocca, A., … Ballardin, G. (2014). Advanced Virgo: a second-generation interferometric gravitational wave detector. Classical and Quantum Gravity, 32(2), 024001. doi:10.1088/0264-9381/32/2/024001 | es_ES |
dc.description.references | Adrián-Martínez, S., Ageron, M., Aguilar, J. A., Samarai, I. A., Albert, A., André, M., … Ardid, M. (2012). The positioning system of the ANTARES Neutrino Telescope. Journal of Instrumentation, 7(08), T08002-T08002. doi:10.1088/1748-0221/7/08/t08002 | es_ES |
dc.description.references | Adrián-Martínez, S., Ageron, M., Aharonian, F., Aiello, S., Albert, A., Ameli, F., … Anghinolfi, M. (2016). Letter of intent for KM3NeT 2.0. Journal of Physics G: Nuclear and Particle Physics, 43(8), 084001. doi:10.1088/0954-3899/43/8/084001 | es_ES |
dc.description.references | Adrián-Martínez, S., Albert, A., André, M., Anghinolfi, M., Anton, G., Ardid, M., … Barrios-Martí, J. (2016). High-energy neutrino follow-up search of gravitational wave event GW150914 with ANTARES and IceCube. Physical Review D, 93(12). doi:10.1103/physrevd.93.122010 | es_ES |
dc.description.references | Adrián-Martínez, S., Samarai, I. A., Albert, A., André, M., Anghinolfi, M., Anton, G., … Aubert, J.-J. (2013). A first search for coincident gravitational waves and high energy neutrinos using LIGO, Virgo and ANTARES data from 2007. Journal of Cosmology and Astroparticle Physics, 2013(06), 008-008. doi:10.1088/1475-7516/2013/06/008 | es_ES |
dc.description.references | Adrián-Martínez, S., Albert, A., Al Samarai, I., André, M., Anghinolfi, M., Anton, G., … Aubert, J.-J. (2013). Search for muon neutrinos from gamma-ray bursts with the ANTARES neutrino telescope using 2008 to 2011 data. Astronomy & Astrophysics, 559, A9. doi:10.1051/0004-6361/201322169 | es_ES |
dc.description.references | Ageron, M., Aguilar, J. A., Al Samarai, I., Albert, A., Ameli, F., André, M., … Ardid, M. (2011). ANTARES: The first undersea neutrino telescope. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 656(1), 11-38. doi:10.1016/j.nima.2011.06.103 | es_ES |
dc.description.references | Agostini, M., Altenmüller, K., Appel, S., Atroshchenko, V., Bagdasarian, Z., Basilico, D., … Bonfini, G. (2017). A Search for Low-energy Neutrinos Correlated with Gravitational Wave Events GW 150914, GW 151226, and GW 170104 with the Borexino Detector. The Astrophysical Journal, 850(1), 21. doi:10.3847/1538-4357/aa9521 | es_ES |
dc.description.references | Aguilar, J. A., Albert, A., Ameli, F., Anghinolfi, M., Anton, G., Anvar, S., … Basa, S. (2007). The data acquisition system for the ANTARES neutrino telescope. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 570(1), 107-116. doi:10.1016/j.nima.2006.09.098 | es_ES |
dc.description.references | Aguilar, J. A., Al Samarai, I., Albert, A., André, M., Anghinolfi, M., Anton, G., … Astraatmadja, T. (2011). Time calibration of the ANTARES neutrino telescope. Astroparticle Physics, 34(7), 539-549. doi:10.1016/j.astropartphys.2010.12.004 | es_ES |
dc.description.references | Albert, A., André, M., Anghinolfi, M., Anton, G., Ardid, M., Aubert, J.-J., … Basa, S. (2017). Search for high-energy neutrinos from gravitational wave event GW151226 and candidate LVT151012 with ANTARES and IceCube. Physical Review D, 96(2). doi:10.1103/physrevd.96.022005 | es_ES |
dc.description.references | Albert, A., André, M., Anghinolfi, M., Anton, G., Ardid, M., Aubert, J.-J., … Basa, S. (2017). All-sky search for high-energy neutrinos from gravitational wave event GW170104 with the Antares neutrino telescope. The European Physical Journal C, 77(12). doi:10.1140/epjc/s10052-017-5451-z | es_ES |
dc.description.references | Albert, A., André, M., Anghinolfi, M., Ardid, M., Aubert, J.-J., Aublin, J., … Basa, S. (2017). Search for High-energy Neutrinos from Binary Neutron Star Merger GW170817 with ANTARES, IceCube, and the Pierre Auger Observatory. The Astrophysical Journal, 850(2), L35. doi:10.3847/2041-8213/aa9aed | es_ES |
dc.description.references | Albert, A., André, M., Anghinolfi, M., Anton, G., Ardid, M., Aubert, J.-J., … Barrios-Martí, J. (2018). All-flavor Search for a Diffuse Flux of Cosmic Neutrinos with Nine Years of ANTARES Data. The Astrophysical Journal, 853(1), L7. doi:10.3847/2041-8213/aaa4f6 | es_ES |
dc.description.references | Albert, A., André, M., Anghinolfi, M., Anton, G., Ardid, M., Aubert, J.-J., … Barrios-Martí, J. (2018). The Search for Neutrinos from TXS 0506+056 with the ANTARES Telescope. The Astrophysical Journal, 863(2), L30. doi:10.3847/2041-8213/aad8c0 | es_ES |
dc.description.references | Alexander, K. D., Margutti, R., Blanchard, P. K., Fong, W., Berger, E., Hajela, A., … Zrake, J. (2018). A Decline in the X-Ray through Radio Emission from GW170817 Continues to Support an Off-axis Structured Jet. The Astrophysical Journal, 863(2), L18. doi:10.3847/2041-8213/aad637 | es_ES |
dc.description.references | Baret, B., Bartos, I., Bouhou, B., Corsi, A., Palma, I. D., Donzaud, C., … Sutton, P. (2011). Bounding the time delay between high-energy neutrinos and gravitational-wave transients from gamma-ray bursts. Astroparticle Physics, 35(1), 1-7. doi:10.1016/j.astropartphys.2011.04.001 | es_ES |
dc.description.references | Baret, B., Bartos, I., Bouhou, B., Chassande-Mottin, E., Corsi, A., Di Palma, I., … Vedovato, G. (2012). Multimessenger science reach and analysis method for common sources of gravitational waves and high-energy neutrinos. Physical Review D, 85(10). doi:10.1103/physrevd.85.103004 | es_ES |
dc.description.references | Bartos, I., Brady, P., & Márka, S. (2013). How gravitational-wave observations can shape the gamma-ray burst paradigm. Classical and Quantum Gravity, 30(12), 123001. doi:10.1088/0264-9381/30/12/123001 | es_ES |
dc.description.references | Bartos, I., Dasgupta, B., & Márka, S. (2012). Probing the structure of jet-driven core-collapse supernova and long gamma-ray burst progenitors with high-energy neutrinos. Physical Review D, 86(8). doi:10.1103/physrevd.86.083007 | es_ES |
dc.description.references | Bartos, I., Finley, C., Corsi, A., & Márka, S. (2011). Observational Constraints on Multimessenger Sources of Gravitational Waves and High-Energy Neutrinos. Physical Review Letters, 107(25). doi:10.1103/physrevlett.107.251101 | es_ES |
dc.description.references | Bartos, I., Haiman, Z., Marka, Z., Metzger, B. D., Stone, N. C., & Marka, S. (2017). Gravitational-wave localization alone can probe origin of stellar-mass black hole mergers. Nature Communications, 8(1). doi:10.1038/s41467-017-00851-7 | es_ES |
dc.description.references | Bartos, I., Kocsis, B., Haiman, Z., & Márka, S. (2017). Rapid and Bright Stellar-mass Binary Black Hole Mergers in Active Galactic Nuclei. The Astrophysical Journal, 835(2), 165. doi:10.3847/1538-4357/835/2/165 | es_ES |
dc.description.references | Berger, E. (2014). Short-Duration Gamma-Ray Bursts. Annual Review of Astronomy and Astrophysics, 52(1), 43-105. doi:10.1146/annurev-astro-081913-035926 | es_ES |
dc.description.references | Bernuzzi, S., Radice, D., Ott, C. D., Roberts, L. F., Mösta, P., & Galeazzi, F. (2016). How loud are neutron star mergers? Physical Review D, 94(2). doi:10.1103/physrevd.94.024023 | es_ES |
dc.description.references | Biehl, D., Heinze, J., & Winter, W. (2018). Expected neutrino fluence from short Gamma-Ray Burst 170817A and off-axis angle constraints. Monthly Notices of the Royal Astronomical Society, 476(1), 1191-1197. doi:10.1093/mnras/sty285 | es_ES |
dc.description.references | Connaughton, V., Burns, E., Goldstein, A., Blackburn, L., Briggs, M. S., Zhang, B.-B., … Veres, P. (2016). FERMI GBM OBSERVATIONS OF LIGO GRAVITATIONAL-WAVE EVENT GW150914. The Astrophysical Journal, 826(1), L6. doi:10.3847/2041-8205/826/1/l6 | es_ES |
dc.description.references | Corsi, A., & Mészáros, P. (2009). GAMMA-RAY BURST AFTERGLOW PLATEAUS AND GRAVITATIONAL WAVES: MULTI-MESSENGER SIGNATURE OF A MILLISECOND MAGNETAR? The Astrophysical Journal, 702(2), 1171-1178. doi:10.1088/0004-637x/702/2/1171 | es_ES |
dc.description.references | Dai, L., McKinney, J. C., & Miller, M. C. (2017). Energetic constraints on electromagnetic signals from double black hole mergers. Monthly Notices of the Royal Astronomical Society: Letters, 470(1), L92-L96. doi:10.1093/mnrasl/slx086 | es_ES |
dc.description.references | Mink, S. E. de, & King, A. (2017). Electromagnetic Signals Following Stellar-mass Black Hole Mergers. The Astrophysical Journal, 839(1), L7. doi:10.3847/2041-8213/aa67f3 | es_ES |
dc.description.references | Fang, K., & Metzger, B. D. (2017). High-energy Neutrinos from Millisecond Magnetars Formed from the Merger of Binary Neutron Stars. The Astrophysical Journal, 849(2), 153. doi:10.3847/1538-4357/aa8b6a | es_ES |
dc.description.references | Fryer, C. L., Holz, D. E., & Hughes, S. A. (2002). Gravitational Wave Emission from Core Collapse of Massive Stars. The Astrophysical Journal, 565(1), 430-446. doi:10.1086/324034 | es_ES |
dc.description.references | Gando, A., Gando, Y., Hachiya, T., Hayashi, A., Hayashida, S., … Ikeda, H. (2016). A SEARCH FOR ELECTRON ANTINEUTRINOS ASSOCIATED WITH GRAVITATIONAL-WAVE EVENTS GW150914 AND GW151226 USING KAMLAND. The Astrophysical Journal, 829(2), L34. doi:10.3847/2041-8205/829/2/l34 | es_ES |
dc.description.references | Gottlieb, O., Nakar, E., Piran, T., & Hotokezaka, K. (2018). A cocoon shock breakout as the origin of the γ-ray emission in GW170817. Monthly Notices of the Royal Astronomical Society. doi:10.1093/mnras/sty1462 | es_ES |
dc.description.references | Gupta, A., Arun, K. G., & Sathyaprakash, B. S. (2017). Implications of Binary Black Hole Detections on the Merger Rates of Double Neutron Stars and Neutron Star–Black Holes. The Astrophysical Journal, 849(1), L14. doi:10.3847/2041-8213/aa9271 | es_ES |
dc.description.references | Haggard, D., Nynka, M., Ruan, J. J., Kalogera, V., Cenko, S. B., Evans, P., & Kennea, J. A. (2017). A Deep Chandra X-Ray Study of Neutron Star Coalescence GW170817. The Astrophysical Journal, 848(2), L25. doi:10.3847/2041-8213/aa8ede | es_ES |
dc.description.references | Halzen, F., & Hooper, D. (2002). High-energy neutrino astronomy: the cosmic ray connection. Reports on Progress in Physics, 65(7), 1025-1078. doi:10.1088/0034-4885/65/7/201 | es_ES |
dc.description.references | Ioka, K., & Nakamura, T. (2018). Can an off-axis gamma-ray burst jet in GW170817 explain all the electromagnetic counterparts? Progress of Theoretical and Experimental Physics, 2018(4). doi:10.1093/ptep/pty036 | es_ES |
dc.description.references | Kashiyama, K., Murase, K., Bartos, I., Kiuchi, K., & Margutti, R. (2016). MULTI-MESSENGER TESTS FOR FAST-SPINNING NEWBORN PULSARS EMBEDDED IN STRIPPED-ENVELOPE SUPERNOVAE. The Astrophysical Journal, 818(1), 94. doi:10.3847/0004-637x/818/1/94 | es_ES |
dc.description.references | Kimura, S. S., Murase, K., Mészáros, P., & Kiuchi, K. (2017). High-energy Neutrino Emission from Short Gamma-Ray Bursts: Prospects for Coincident Detection with Gravitational Waves. The Astrophysical Journal, 848(1), L4. doi:10.3847/2041-8213/aa8d14 | es_ES |
dc.description.references | Kimura, S. S., Takahashi, S. Z., & Toma, K. (2016). Evolution of an accretion disc in binary black hole systems. Monthly Notices of the Royal Astronomical Society, 465(4), 4406-4413. doi:10.1093/mnras/stw3036 | es_ES |
dc.description.references | Kintscher, T. (2016). Results and prospects of IceCube’s real time alert capabilities. Journal of Physics: Conference Series, 718, 062029. doi:10.1088/1742-6596/718/6/062029 | es_ES |
dc.description.references | Klimenko, S., Vedovato, G., Drago, M., Mazzolo, G., Mitselmakher, G., Pankow, C., … Yakushin, I. (2011). Localization of gravitational wave sources with networks of advanced detectors. Physical Review D, 83(10). doi:10.1103/physrevd.83.102001 | es_ES |
dc.description.references | Klimenko, S., Vedovato, G., Drago, M., Salemi, F., Tiwari, V., Prodi, G. A., … Mitselmakher, G. (2016). Method for detection and reconstruction of gravitational wave transients with networks of advanced detectors. Physical Review D, 93(4). doi:10.1103/physrevd.93.042004 | es_ES |
dc.description.references | Klimenko, S., Yakushin, I., Mercer, A., & Mitselmakher, G. (2008). A coherent method for detection of gravitational wave bursts. Classical and Quantum Gravity, 25(11), 114029. doi:10.1088/0264-9381/25/11/114029 | es_ES |
dc.description.references | Kotake, K., Sumiyoshi, K., Yamada, S., Takiwaki, T., Kuroda, T., Suwa, Y., & Nagakura, H. (2012). Core-collapse supernovae as supercomputing science: A status report toward six-dimensional simulations with exact Boltzmann neutrino transport in full general relativity. Progress of Theoretical and Experimental Physics, 2012(1). doi:10.1093/ptep/pts009 | es_ES |
dc.description.references | Kotera, K., & Silk, J. (2016). ULTRAHIGH-ENERGY COSMIC RAYS AND BLACK HOLE MERGERS. The Astrophysical Journal, 823(2), L29. doi:10.3847/2041-8205/823/2/l29 | es_ES |
dc.description.references | Lazzati, D., Perna, R., Morsony, B. J., Lopez-Camara, D., Cantiello, M., Ciolfi, R., … Workman, J. C. (2018). Late Time Afterglow Observations Reveal a Collimated Relativistic Jet in the Ejecta of the Binary Neutron Star Merger GW170817. Physical Review Letters, 120(24). doi:10.1103/physrevlett.120.241103 | es_ES |
dc.description.references | Li, W., Chornock, R., Leaman, J., Filippenko, A. V., Poznanski, D., Wang, X., … Mannucci, F. (2011). Nearby supernova rates from the Lick Observatory Supernova Search - III. The rate-size relation, and the rates as a function of galaxy Hubble type and colour. Monthly Notices of the Royal Astronomical Society, 412(3), 1473-1507. doi:10.1111/j.1365-2966.2011.18162.x | es_ES |
dc.description.references | Loeb, A. (2016). ELECTROMAGNETIC COUNTERPARTS TO BLACK HOLE MERGERS DETECTED BY LIGO. The Astrophysical Journal, 819(2), L21. doi:10.3847/2041-8205/819/2/l21 | es_ES |
dc.description.references | Loeb, A., & Waxman, E. (2006). The cumulative background of high energy neutrinos from starburst galaxies. Journal of Cosmology and Astroparticle Physics, 2006(05), 003-003. doi:10.1088/1475-7516/2006/05/003 | es_ES |
dc.description.references | Mészáros, P., & Waxman, E. (2001). TeV Neutrinos from Successful and Choked Gamma-Ray Bursts. Physical Review Letters, 87(17). doi:10.1103/physrevlett.87.171102 | es_ES |
dc.description.references | Moharana, R., Razzaque, S., Gupta, N., & Mészáros, P. (2016). High-energy neutrinos from the gravitational wave event GW150914 possibly associated with a short gamma-ray burst. Physical Review D, 93(12). doi:10.1103/physrevd.93.123011 | es_ES |
dc.description.references | Mooley, K. P., Deller, A. T., Gottlieb, O., Nakar, E., Hallinan, G., Bourke, S., … Hotokezaka, K. (2018). Superluminal motion of a relativistic jet in the neutron-star merger GW170817. Nature, 561(7723), 355-359. doi:10.1038/s41586-018-0486-3 | es_ES |
dc.description.references | Mooley, K. P., Nakar, E., Hotokezaka, K., Hallinan, G., Corsi, A., Frail, D. A., … Singer, L. P. (2017). A mildly relativistic wide-angle outflow in the neutron-star merger event GW170817. Nature, 554(7691), 207-210. doi:10.1038/nature25452 | es_ES |
dc.description.references | Müller, B., Janka, H.-T., & Marek, A. (2013). A NEW MULTI-DIMENSIONAL GENERAL RELATIVISTIC NEUTRINO HYDRODYNAMICS CODE OF CORE-COLLAPSE SUPERNOVAE. III. GRAVITATIONAL WAVE SIGNALS FROM SUPERNOVA EXPLOSION MODELS. The Astrophysical Journal, 766(1), 43. doi:10.1088/0004-637x/766/1/43 | es_ES |
dc.description.references | Murase, K., Kashiyama, K., Mészáros, P., Shoemaker, I., & Senno, N. (2016). ULTRAFAST OUTFLOWS FROM BLACK HOLE MERGERS WITH A MINIDISK. The Astrophysical Journal, 822(1), L9. doi:10.3847/2041-8205/822/1/l9 | es_ES |
dc.description.references | Perna, R., Lazzati, D., & Giacomazzo, B. (2016). SHORT GAMMA-RAY BURSTS FROM THE MERGER OF TWO BLACK HOLES. The Astrophysical Journal, 821(1), L18. doi:10.3847/2041-8205/821/1/l18 | es_ES |
dc.description.references | Piro, A. L., & Thrane, E. (2012). GRAVITATIONAL WAVES FROM FALLBACK ACCRETION ONTO NEUTRON STARS. The Astrophysical Journal, 761(1), 63. doi:10.1088/0004-637x/761/1/63 | es_ES |
dc.description.references | Razzaque, S., Mészáros, P., & Waxman, E. (2003). Neutrino tomography of gamma ray bursts and massive stellar collapses. Physical Review D, 68(8). doi:10.1103/physrevd.68.083001 | es_ES |
dc.description.references | Senno, N., Murase, K., & Mészáros, P. (2016). Choked jets and low-luminosity gamma-ray bursts as hidden neutrino sources. Physical Review D, 93(8). doi:10.1103/physrevd.93.083003 | es_ES |
dc.description.references | Singer, L. P., Price, L. R., Farr, B., Urban, A. L., Pankow, C., Vitale, S., … Vecchio, A. (2014). THE FIRST TWO YEARS OF ELECTROMAGNETIC FOLLOW-UP WITH ADVANCED LIGO AND VIRGO. The Astrophysical Journal, 795(2), 105. doi:10.1088/0004-637x/795/2/105 | es_ES |
dc.description.references | Stone, N. C., Metzger, B. D., & Haiman, Z. (2016). Assisted inspirals of stellar mass black holes embedded in AGN discs: solving the ‘final au problem’. Monthly Notices of the Royal Astronomical Society, 464(1), 946-954. doi:10.1093/mnras/stw2260 | es_ES |
dc.description.references | Tamborra, I., & Ando, S. (2016). Inspecting the supernova–gamma-ray-burst connection with high-energy neutrinos. Physical Review D, 93(5). doi:10.1103/physrevd.93.053010 | es_ES |
dc.description.references | Waxman, E., & Bahcall, J. (1997). High Energy Neutrinos from Cosmological Gamma-Ray Burst Fireballs. Physical Review Letters, 78(12), 2292-2295. doi:10.1103/physrevlett.78.2292 | es_ES |
dc.description.references | Yakunin, K. N., Marronetti, P., Mezzacappa, A., Bruenn, S. W., Lee, C.-T., Chertkow, M. A., … Yoshida, S. (2010). Gravitational waves from core collapse supernovae. Classical and Quantum Gravity, 27(19), 194005. doi:10.1088/0264-9381/27/19/194005 | es_ES |