- -

Search for Multimessenger Sources of Gravitational Waves and High-energy Neutrinos with Advanced LIGO during Its First Observing Run, ANTARES, and IceCube

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Search for Multimessenger Sources of Gravitational Waves and High-energy Neutrinos with Advanced LIGO during Its First Observing Run, ANTARES, and IceCube

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Albert, A. es_ES
dc.contributor.author Andre, M. es_ES
dc.contributor.author Anghinolfi, M. es_ES
dc.contributor.author Ardid Ramírez, Miguel es_ES
dc.contributor.author Aubert, J.J. es_ES
dc.contributor.author Aublin, J. es_ES
dc.contributor.author Avgitas, T. es_ES
dc.contributor.author Baret, B. es_ES
dc.contributor.author Barrios-Marti, J. es_ES
dc.contributor.author Basa, S. es_ES
dc.contributor.author Belhorma, B. es_ES
dc.contributor.author Bertin, V. es_ES
dc.contributor.author Biagi, S. es_ES
dc.contributor.author Bormuth, R. es_ES
dc.contributor.author Boumaaza, J. es_ES
dc.contributor.author Martínez Mora, Juan Antonio es_ES
dc.contributor.author Saldaña-Coscollar, María es_ES
dc.date.accessioned 2020-11-05T04:33:36Z
dc.date.available 2020-11-05T04:33:36Z
dc.date.issued 2019-01-10 es_ES
dc.identifier.issn 0004-637X es_ES
dc.identifier.uri http://hdl.handle.net/10251/154111
dc.description.abstract [EN] Astrophysical sources of gravitational waves, such as binary neutron star and black hole mergers or core-collapse supernovae, can drive relativistic outflows, giving rise to non-thermal high-energy emission. High-energy neutrinos are signatures of such outflows. The detection of gravitational waves and high-energy neutrinos from common sources could help establish the connection between the dynamics of the progenitor and the properties of the out¿ow. We searched for associated emission of gravitational waves and high-energy neutrinos from astrophysical transients with minimal assumptions using data from Advanced LIGO from its first observing run O1, and data from the ANTARES and IceCube neutrino observatories from the same time period. We focused on candidate events whose astrophysical origins could not be determined from a single messenger. We found no significant coincident candidate, which we used to constrain the rate density of astrophysical sources dependent on their gravitational-wave and neutrino emission processes. es_ES
dc.description.sponsorship The ANTARES Collaboration acknowledge the financial support of the funding agencies: Centre National de la Recherche Scientifique (CNRS), Commissariat a l'energie atomique et aux energies alternatives (CEA), Commission Europeenne (FEDER fund and Marie Curie Program), Institut Universitaire de France (IUF), IdEx program and UnivEarthS Labex program at Sorbonne Paris Cite (ANR-10-LABX-0023 and ANR-11-IDEX-0005-02), Labex OCEVU (ANR-11-LABX-0060) and the A*MIDEX project (ANR-11-IDEX-0001-02), Region Ile-de-France (DIM-ACAV), Region Alsace (contrat CPER), Region Provence-Alpes-Cote d'Azur, Departement du Var and Ville de La Seyne-sur-Mer, France; Bundesministerium fur Bildung und Forschung (BMBF), Germany; Istituto Nazionale di Fisica Nucleare (INFN), Italy; Nederlandse organisatie voor Wetenschappelijk Onderzoek (NWO), the Netherlands; Council of the President of the Russian Federation for young scientists and leading scientific schools supporting grants, Russia; National Authority for Scientific Research (ANCS), Romania; Ministerio de Economia y Competitividad (MINECO): Plan Estatal de Investigacion (refs. FPA2015-65150-C3-1-P, -2-P and -3-P, (MINECO/FEDER)), Severo Ochoa Centre of Excellence and MultiDark Consolider (MINECO), and Prometeo and Grisolia programs (Generalitat Valenciana), Spain; Ministry of Higher Education, Scientific Research and Professional Training, Morocco. We also acknowledge the technical support of Ifremer, AIM and Foselev Marine for the sea operation and the CC-IN2P3 for the computing facilities. The IceCube Collaboration gratefully acknowledges the following support: USA-U.S. National Science Foundation-Office of Polar Programs, U.S. National Science Foundation-Physics Division, Wisconsin Alumni Research Foundation, Center for High Throughput Computing (CHTC) at the University of Wisconsin-Madison, Open Science Grid (OSG), Extreme Science and Engineering Discovery Environment (XSEDE), U.S. Department of Energy-National Energy Research Scientific Computing Center, Particle astrophysics research computing center at the University of Maryland, Institute for Cyber-Enabled Research at Michigan State University, and Astroparticle physics computational facility at Marquette University; Belgium-Funds for Scientific Research (FRS-FNRS and FWO), FWO Odysseus and Big Science programmes, and Belgian Federal Science Policy Office (Belspo); Germany-Bundesministerium fur Bildung und Forschung (BMBF), Deutsche Forschungsgemeinschaft (DFG), Helmholtz Alliance for Astroparticle Physics (HAP), Initiative and Networking Fund of the Helmholtz Association, Deutsches Elektronen Synchrotron (DESY), and High Performance Computing cluster of the RWTH Aachen; Sweden-Swedish Research Council, Swedish Polar Research Secretariat, Swedish National Infrastructure for Computing (SNIC), and Knut and Alice Wallenberg Foundation; Australia-Australian Research Council; Canada-Natural Sciences and Engineering Research Council of Canada, Calcul Quebec, Compute Ontario, Canada Foundation for Innovation, WestGrid, and Compute Canada; Denmark-Villum Fonden, Danish National Research Foundation (DNRF); New Zealand-Marsden Fund; Japan-Japan Society for Promotion of Science (JSPS) and Institute for Global Prominent Research (IGPR) of Chiba University; Korea-National Research Foundation of Korea (NRF); Switzerland-Swiss National Science Foundation (SNSF). The LIGO Scientific Collaboration and the Virgo Collaboration gratefully acknowledge the support of the United States National Science Foundation (NSF) for the construction and operation of the LIGO Laboratory and Advanced LIGO as well as the Science and Technology Facilities Council (STFC) of the United Kingdom, the Max-Planck-Society (MPS), and the State of Niedersachsen/Germany for support of the construction of Advanced LIGO and construction and operation of the GEO600 detector. Additional support for Advanced LIGO was provided by the Australian Research Council, etc. es_ES
dc.language Inglés es_ES
dc.publisher American Astronomical Society es_ES
dc.relation.ispartof The Astrophysical Journal es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Gravitational waves es_ES
dc.subject Neutrinos es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title Search for Multimessenger Sources of Gravitational Waves and High-energy Neutrinos with Advanced LIGO during Its First Observing Run, ANTARES, and IceCube es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3847/1538-4357/aaf21d es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//FPA2015-65150-C3-1-P/ES/PARTICIPACION DEL IFIC EN ANTARES, KM3NET-ARCA%2FORCA Y PDG/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/ANR//ANR-11-LABX-0060/FR/Origines, Constituants et EVolution de l'Univers/OCEVU/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/ANR//ANR-11-IDEX-0005/FR/Université Sorbonne Paris Cité/USPC/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/ANR//ANR-11-IDEX-0001/FR/INITIATIVE D'EXCELLENCE AIX MARSEILLE UNIVERSITE/Amidex/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/ANR//ANR-10-LABX-0023/FR/Earth - Planets - Universe: observation, modeling, transfer/UnivEarthS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//FPA2015-65150-C3-3-P/ES/PARTICIPACION DE LA UGR EN ANTARES, KM3NET-ARCA%2FORCA Y PDG/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//FPA2015-65150-C3-2-P/ES/PARTICIPACION DE LA UPV EN ANTARES Y KM3NET-ARCA%2FORCA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI//FPA2017-90566-REDC/ES/RED CONSOLIDER MULTIDARK/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.description.bibliographicCitation Albert, A.; Andre, M.; Anghinolfi, M.; Ardid Ramírez, M.; Aubert, J.; Aublin, J.; Avgitas, T.... (2019). Search for Multimessenger Sources of Gravitational Waves and High-energy Neutrinos with Advanced LIGO during Its First Observing Run, ANTARES, and IceCube. The Astrophysical Journal. 870(2):1-16. https://doi.org/10.3847/1538-4357/aaf21d es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3847/1538-4357/aaf21d es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 16 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 870 es_ES
dc.description.issue 2 es_ES
dc.relation.pasarela S\400012 es_ES
dc.contributor.funder Royal Society, Reino Unido es_ES
dc.contributor.funder Agence Nationale de la Recherche, Francia es_ES
dc.contributor.funder Villum Foundation es_ES
dc.contributor.funder Kavli Foundation es_ES
dc.contributor.funder Leverhulme Trust es_ES
dc.contributor.funder A*Midex Foundation es_ES
dc.contributor.funder Max Planck Society es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Govern Illes Balears es_ES
dc.contributor.funder Region Ile-de-France es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder U.S. Department of Energy es_ES
dc.contributor.funder Conseil Régional d'Alsace es_ES
dc.contributor.funder Australian Research Council es_ES
dc.contributor.funder Danish National Research Foundation es_ES
dc.contributor.funder Deutsche Forschungsgemeinschaft es_ES
dc.contributor.funder National Science Centre, Polonia es_ES
dc.contributor.funder Canada Foundation for Innovation es_ES
dc.contributor.funder Université Sorbonne Paris Cité es_ES
dc.contributor.funder Institut Universitaire de France es_ES
dc.contributor.funder National Science Foundation, EEUU es_ES
dc.contributor.funder Research Grant Council, Hong Kong es_ES
dc.contributor.funder Swiss National Science Foundation es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Hungarian Scientific Research Fund es_ES
dc.contributor.funder Knut and Alice Wallenberg Foundation es_ES
dc.contributor.funder Belgian Federal Science Policy Office es_ES
dc.contributor.funder National Research Foundation of Korea es_ES
dc.contributor.funder Russian Foundation for Basic Research es_ES
dc.contributor.funder Instituto Nazionale di Fisica Nucleare es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Research Foundation Flanders es_ES
dc.contributor.funder Ministry of Science and Technology, Taiwan es_ES
dc.contributor.funder Fonds de la Recherche Scientifique, Belgica es_ES
dc.contributor.funder Japan Society for the Promotion of Science es_ES
dc.contributor.funder Conseil Régional Provence-Alpes-Côte d'Azur es_ES
dc.contributor.funder National Natural Science Foundation of China es_ES
dc.contributor.funder Helmholtz Association of German Research Centers es_ES
dc.contributor.funder Netherlands Organization for Scientific Research es_ES
dc.contributor.funder Département du Var and Ville de La Seyne-sur-Mer es_ES
dc.contributor.funder National Authority for Scientific Research, Rumanía es_ES
dc.contributor.funder Council of Scientific and Industrial Research, India es_ES
dc.contributor.funder Bundesministerium für Bildung und Forschung, Alemania es_ES
dc.contributor.funder Centre National de la Recherche Scientifique, Francia es_ES
dc.contributor.funder Science and Technology Facilities Council, Reino Unido es_ES
dc.contributor.funder Natural Sciences and Engineering Research Council of Canada es_ES
dc.contributor.funder Council on grants of the President of the Russian Federation es_ES
dc.contributor.funder Ministerio da Ciencia, Tecnologia, Inovacoes e Comunicacoes, Brasil es_ES
dc.contributor.funder Commissariat à l'Énergie Atomique et aux Énergies Alternatives, Francia es_ES
dc.contributor.funder Laboratoire d'Excellence OCEVU (Origines, Constituants & ÉVolution de l'Univers) es_ES
dc.contributor.funder Ministère de l'Education Nationale, de la Formation professionnelle, de l'Enseignement Supérieur et de la Recherche Scientifique, Marruecos es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references The Pierre Auger Cosmic Ray Observatory. (2015). Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 798, 172-213. doi:10.1016/j.nima.2015.06.058 es_ES
dc.description.references Aartsen, M. G., Abbasi, R., Abdou, Y., Ackermann, M., Adams, J., Aguilar, J. A., … Bai, X. (2013). First Observation of PeV-Energy Neutrinos with IceCube. Physical Review Letters, 111(2). doi:10.1103/physrevlett.111.021103 es_ES
dc.description.references (2013). Evidence for High-Energy Extraterrestrial Neutrinos at the IceCube Detector. Science, 342(6161), 1242856-1242856. doi:10.1126/science.1242856 es_ES
dc.description.references Aartsen, M. G., Ackermann, M., Adams, J., Aguilar, J. A., Ahlers, M., Ahrens, M., … Arlen, T. C. (2014). Multimessenger search for sources of gravitational waves and high-energy neutrinos: Initial results for LIGO-Virgo and IceCube. Physical Review D, 90(10). doi:10.1103/physrevd.90.102002 es_ES
dc.description.references Aartsen, M. G., Ackermann, M., Adams, J., Aguilar, J. A., Ahlers, M., Ahrens, M., … Ansseau, I. (2017). The IceCube Neutrino Observatory: instrumentation and online systems. Journal of Instrumentation, 12(03), P03012-P03012. doi:10.1088/1748-0221/12/03/p03012 es_ES
dc.description.references Aartsen, M. G., Ackermann, M., Adams, J., Aguilar, J. A., Ahlers, M., Ahrens, M., … Ansseau, I. (2017). The IceCube realtime alert system. Astroparticle Physics, 92, 30-41. doi:10.1016/j.astropartphys.2017.05.002 es_ES
dc.description.references Aartsen, M. G., Abraham, K., Ackermann, M., Adams, J., Aguilar, J. A., Ahlers, M., … Anderson, T. (2017). All-sky Search for Time-integrated Neutrino Emission from Astrophysical Sources with 7 yr of IceCube Data. The Astrophysical Journal, 835(2), 151. doi:10.3847/1538-4357/835/2/151 es_ES
dc.description.references Aartsen, M. G., Ackermann, M., Adams, J., Aguilar, J. A., Ahlers, M., Ahrens, M., … Anderson, T. (2017). Extending the Search for Muon Neutrinos Coincident with Gamma-Ray Bursts in IceCube Data. The Astrophysical Journal, 843(2), 112. doi:10.3847/1538-4357/aa7569 es_ES
dc.description.references Abadie, J., Abbott, B. P., Abbott, R., Accadia, T., Acernese, F., Adhikari, R., … Amador Ceron, E. (2010). All-sky search for gravitational-wave bursts in the first joint LIGO-GEO-Virgo run. Physical Review D, 81(10). doi:10.1103/physrevd.81.102001 es_ES
dc.description.references (2012). An absence of neutrinos associated with cosmic-ray acceleration in γ-ray bursts. Nature, 484(7394), 351-354. doi:10.1038/nature11068 es_ES
dc.description.references Abbott, B. P., Abbott, R., Abbott, T. D., Abernathy, M. R., Acernese, F., Ackley, K., … Adhikari, R. X. (2016). Binary Black Hole Mergers in the First Advanced LIGO Observing Run. Physical Review X, 6(4). doi:10.1103/physrevx.6.041015 es_ES
dc.description.references Abbott, B. P., Abbott, R., Abbott, T. D., Abernathy, M. R., Acernese, F., Ackley, K., … Adhikari, R. X. (2016). Observing gravitational-wave transient GW150914 with minimal assumptions. Physical Review D, 93(12). doi:10.1103/physrevd.93.122004 es_ES
dc.description.references Abbott, B. P., Abbott, R., Abbott, T. D., Acernese, F., Ackley, K., Adams, C., … Adya, V. B. (2017). GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2. Physical Review Letters, 118(22). doi:10.1103/physrevlett.118.221101 es_ES
dc.description.references Abbott, B. P., Abbott, R., Abbott, T. D., Acernese, F., Ackley, K., Adams, C., … Adya, V. B. (2017). GW170608: Observation of a 19 Solar-mass Binary Black Hole Coalescence. The Astrophysical Journal, 851(2), L35. doi:10.3847/2041-8213/aa9f0c es_ES
dc.description.references Abbott, B. P., Abbott, R., Abbott, T. D., Acernese, F., Ackley, K., Adams, C., … Adya, V. B. (2017). GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence. Physical Review Letters, 119(14). doi:10.1103/physrevlett.119.141101 es_ES
dc.description.references Abbott, B. P., Abbott, R., Abbott, T. D., Acernese, F., Ackley, K., Adams, C., … Adya, V. B. (2017). GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters, 119(16). doi:10.1103/physrevlett.119.161101 es_ES
dc.description.references Abe, K., Haga, K., Hayato, Y., Ikeda, M., Iyogi, K., Kameda, J., … Nakahata, M. (2016). SEARCH FOR NEUTRINOS IN SUPER-KAMIOKANDE ASSOCIATED WITH GRAVITATIONAL-WAVE EVENTS GW150914 AND GW151226. The Astrophysical Journal, 830(1), L11. doi:10.3847/2041-8205/830/1/l11 es_ES
dc.description.references Acernese, F., Agathos, M., Agatsuma, K., Aisa, D., Allemandou, N., Allocca, A., … Ballardin, G. (2014). Advanced Virgo: a second-generation interferometric gravitational wave detector. Classical and Quantum Gravity, 32(2), 024001. doi:10.1088/0264-9381/32/2/024001 es_ES
dc.description.references Adrián-Martínez, S., Ageron, M., Aguilar, J. A., Samarai, I. A., Albert, A., André, M., … Ardid, M. (2012). The positioning system of the ANTARES Neutrino Telescope. Journal of Instrumentation, 7(08), T08002-T08002. doi:10.1088/1748-0221/7/08/t08002 es_ES
dc.description.references Adrián-Martínez, S., Ageron, M., Aharonian, F., Aiello, S., Albert, A., Ameli, F., … Anghinolfi, M. (2016). Letter of intent for KM3NeT 2.0. Journal of Physics G: Nuclear and Particle Physics, 43(8), 084001. doi:10.1088/0954-3899/43/8/084001 es_ES
dc.description.references Adrián-Martínez, S., Albert, A., André, M., Anghinolfi, M., Anton, G., Ardid, M., … Barrios-Martí, J. (2016). High-energy neutrino follow-up search of gravitational wave event GW150914 with ANTARES and IceCube. Physical Review D, 93(12). doi:10.1103/physrevd.93.122010 es_ES
dc.description.references Adrián-Martínez, S., Samarai, I. A., Albert, A., André, M., Anghinolfi, M., Anton, G., … Aubert, J.-J. (2013). A first search for coincident gravitational waves and high energy neutrinos using LIGO, Virgo and ANTARES data from 2007. Journal of Cosmology and Astroparticle Physics, 2013(06), 008-008. doi:10.1088/1475-7516/2013/06/008 es_ES
dc.description.references Adrián-Martínez, S., Albert, A., Al Samarai, I., André, M., Anghinolfi, M., Anton, G., … Aubert, J.-J. (2013). Search for muon neutrinos from gamma-ray bursts with the ANTARES neutrino telescope using 2008 to 2011 data. Astronomy & Astrophysics, 559, A9. doi:10.1051/0004-6361/201322169 es_ES
dc.description.references Ageron, M., Aguilar, J. A., Al Samarai, I., Albert, A., Ameli, F., André, M., … Ardid, M. (2011). ANTARES: The first undersea neutrino telescope. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 656(1), 11-38. doi:10.1016/j.nima.2011.06.103 es_ES
dc.description.references Agostini, M., Altenmüller, K., Appel, S., Atroshchenko, V., Bagdasarian, Z., Basilico, D., … Bonfini, G. (2017). A Search for Low-energy Neutrinos Correlated with Gravitational Wave Events GW 150914, GW 151226, and GW 170104 with the Borexino Detector. The Astrophysical Journal, 850(1), 21. doi:10.3847/1538-4357/aa9521 es_ES
dc.description.references Aguilar, J. A., Albert, A., Ameli, F., Anghinolfi, M., Anton, G., Anvar, S., … Basa, S. (2007). The data acquisition system for the ANTARES neutrino telescope. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 570(1), 107-116. doi:10.1016/j.nima.2006.09.098 es_ES
dc.description.references Aguilar, J. A., Al Samarai, I., Albert, A., André, M., Anghinolfi, M., Anton, G., … Astraatmadja, T. (2011). Time calibration of the ANTARES neutrino telescope. Astroparticle Physics, 34(7), 539-549. doi:10.1016/j.astropartphys.2010.12.004 es_ES
dc.description.references Albert, A., André, M., Anghinolfi, M., Anton, G., Ardid, M., Aubert, J.-J., … Basa, S. (2017). Search for high-energy neutrinos from gravitational wave event GW151226 and candidate LVT151012 with ANTARES and IceCube. Physical Review D, 96(2). doi:10.1103/physrevd.96.022005 es_ES
dc.description.references Albert, A., André, M., Anghinolfi, M., Anton, G., Ardid, M., Aubert, J.-J., … Basa, S. (2017). All-sky search for high-energy neutrinos from gravitational wave event GW170104 with the Antares neutrino telescope. The European Physical Journal C, 77(12). doi:10.1140/epjc/s10052-017-5451-z es_ES
dc.description.references Albert, A., André, M., Anghinolfi, M., Ardid, M., Aubert, J.-J., Aublin, J., … Basa, S. (2017). Search for High-energy Neutrinos from Binary Neutron Star Merger GW170817 with ANTARES, IceCube, and the Pierre Auger Observatory. The Astrophysical Journal, 850(2), L35. doi:10.3847/2041-8213/aa9aed es_ES
dc.description.references Albert, A., André, M., Anghinolfi, M., Anton, G., Ardid, M., Aubert, J.-J., … Barrios-Martí, J. (2018). All-flavor Search for a Diffuse Flux of Cosmic Neutrinos with Nine Years of ANTARES Data. The Astrophysical Journal, 853(1), L7. doi:10.3847/2041-8213/aaa4f6 es_ES
dc.description.references Albert, A., André, M., Anghinolfi, M., Anton, G., Ardid, M., Aubert, J.-J., … Barrios-Martí, J. (2018). The Search for Neutrinos from TXS 0506+056 with the ANTARES Telescope. The Astrophysical Journal, 863(2), L30. doi:10.3847/2041-8213/aad8c0 es_ES
dc.description.references Alexander, K. D., Margutti, R., Blanchard, P. K., Fong, W., Berger, E., Hajela, A., … Zrake, J. (2018). A Decline in the X-Ray through Radio Emission from GW170817 Continues to Support an Off-axis Structured Jet. The Astrophysical Journal, 863(2), L18. doi:10.3847/2041-8213/aad637 es_ES
dc.description.references Baret, B., Bartos, I., Bouhou, B., Corsi, A., Palma, I. D., Donzaud, C., … Sutton, P. (2011). Bounding the time delay between high-energy neutrinos and gravitational-wave transients from gamma-ray bursts. Astroparticle Physics, 35(1), 1-7. doi:10.1016/j.astropartphys.2011.04.001 es_ES
dc.description.references Baret, B., Bartos, I., Bouhou, B., Chassande-Mottin, E., Corsi, A., Di Palma, I., … Vedovato, G. (2012). Multimessenger science reach and analysis method for common sources of gravitational waves and high-energy neutrinos. Physical Review D, 85(10). doi:10.1103/physrevd.85.103004 es_ES
dc.description.references Bartos, I., Brady, P., & Márka, S. (2013). How gravitational-wave observations can shape the gamma-ray burst paradigm. Classical and Quantum Gravity, 30(12), 123001. doi:10.1088/0264-9381/30/12/123001 es_ES
dc.description.references Bartos, I., Dasgupta, B., & Márka, S. (2012). Probing the structure of jet-driven core-collapse supernova and long gamma-ray burst progenitors with high-energy neutrinos. Physical Review D, 86(8). doi:10.1103/physrevd.86.083007 es_ES
dc.description.references Bartos, I., Finley, C., Corsi, A., & Márka, S. (2011). Observational Constraints on Multimessenger Sources of Gravitational Waves and High-Energy Neutrinos. Physical Review Letters, 107(25). doi:10.1103/physrevlett.107.251101 es_ES
dc.description.references Bartos, I., Haiman, Z., Marka, Z., Metzger, B. D., Stone, N. C., & Marka, S. (2017). Gravitational-wave localization alone can probe origin of stellar-mass black hole mergers. Nature Communications, 8(1). doi:10.1038/s41467-017-00851-7 es_ES
dc.description.references Bartos, I., Kocsis, B., Haiman, Z., & Márka, S. (2017). Rapid and Bright Stellar-mass Binary Black Hole Mergers in Active Galactic Nuclei. The Astrophysical Journal, 835(2), 165. doi:10.3847/1538-4357/835/2/165 es_ES
dc.description.references Berger, E. (2014). Short-Duration Gamma-Ray Bursts. Annual Review of Astronomy and Astrophysics, 52(1), 43-105. doi:10.1146/annurev-astro-081913-035926 es_ES
dc.description.references Bernuzzi, S., Radice, D., Ott, C. D., Roberts, L. F., Mösta, P., & Galeazzi, F. (2016). How loud are neutron star mergers? Physical Review D, 94(2). doi:10.1103/physrevd.94.024023 es_ES
dc.description.references Biehl, D., Heinze, J., & Winter, W. (2018). Expected neutrino fluence from short Gamma-Ray Burst 170817A and off-axis angle constraints. Monthly Notices of the Royal Astronomical Society, 476(1), 1191-1197. doi:10.1093/mnras/sty285 es_ES
dc.description.references Connaughton, V., Burns, E., Goldstein, A., Blackburn, L., Briggs, M. S., Zhang, B.-B., … Veres, P. (2016). FERMI GBM OBSERVATIONS OF LIGO GRAVITATIONAL-WAVE EVENT GW150914. The Astrophysical Journal, 826(1), L6. doi:10.3847/2041-8205/826/1/l6 es_ES
dc.description.references Corsi, A., & Mészáros, P. (2009). GAMMA-RAY BURST AFTERGLOW PLATEAUS AND GRAVITATIONAL WAVES: MULTI-MESSENGER SIGNATURE OF A MILLISECOND MAGNETAR? The Astrophysical Journal, 702(2), 1171-1178. doi:10.1088/0004-637x/702/2/1171 es_ES
dc.description.references Dai, L., McKinney, J. C., & Miller, M. C. (2017). Energetic constraints on electromagnetic signals from double black hole mergers. Monthly Notices of the Royal Astronomical Society: Letters, 470(1), L92-L96. doi:10.1093/mnrasl/slx086 es_ES
dc.description.references Mink, S. E. de, & King, A. (2017). Electromagnetic Signals Following Stellar-mass Black Hole Mergers. The Astrophysical Journal, 839(1), L7. doi:10.3847/2041-8213/aa67f3 es_ES
dc.description.references Fang, K., & Metzger, B. D. (2017). High-energy Neutrinos from Millisecond Magnetars Formed from the Merger of Binary Neutron Stars. The Astrophysical Journal, 849(2), 153. doi:10.3847/1538-4357/aa8b6a es_ES
dc.description.references Fryer, C. L., Holz, D. E., & Hughes, S. A. (2002). Gravitational Wave Emission from Core Collapse of Massive Stars. The Astrophysical Journal, 565(1), 430-446. doi:10.1086/324034 es_ES
dc.description.references Gando, A., Gando, Y., Hachiya, T., Hayashi, A., Hayashida, S., … Ikeda, H. (2016). A SEARCH FOR ELECTRON ANTINEUTRINOS ASSOCIATED WITH GRAVITATIONAL-WAVE EVENTS GW150914 AND GW151226 USING KAMLAND. The Astrophysical Journal, 829(2), L34. doi:10.3847/2041-8205/829/2/l34 es_ES
dc.description.references Gottlieb, O., Nakar, E., Piran, T., & Hotokezaka, K. (2018). A cocoon shock breakout as the origin of the γ-ray emission in GW170817. Monthly Notices of the Royal Astronomical Society. doi:10.1093/mnras/sty1462 es_ES
dc.description.references Gupta, A., Arun, K. G., & Sathyaprakash, B. S. (2017). Implications of Binary Black Hole Detections on the Merger Rates of Double Neutron Stars and Neutron Star–Black Holes. The Astrophysical Journal, 849(1), L14. doi:10.3847/2041-8213/aa9271 es_ES
dc.description.references Haggard, D., Nynka, M., Ruan, J. J., Kalogera, V., Cenko, S. B., Evans, P., & Kennea, J. A. (2017). A Deep Chandra X-Ray Study of Neutron Star Coalescence GW170817. The Astrophysical Journal, 848(2), L25. doi:10.3847/2041-8213/aa8ede es_ES
dc.description.references Halzen, F., & Hooper, D. (2002). High-energy neutrino astronomy: the cosmic ray connection. Reports on Progress in Physics, 65(7), 1025-1078. doi:10.1088/0034-4885/65/7/201 es_ES
dc.description.references Ioka, K., & Nakamura, T. (2018). Can an off-axis gamma-ray burst jet in GW170817 explain all the electromagnetic counterparts? Progress of Theoretical and Experimental Physics, 2018(4). doi:10.1093/ptep/pty036 es_ES
dc.description.references Kashiyama, K., Murase, K., Bartos, I., Kiuchi, K., & Margutti, R. (2016). MULTI-MESSENGER TESTS FOR FAST-SPINNING NEWBORN PULSARS EMBEDDED IN STRIPPED-ENVELOPE SUPERNOVAE. The Astrophysical Journal, 818(1), 94. doi:10.3847/0004-637x/818/1/94 es_ES
dc.description.references Kimura, S. S., Murase, K., Mészáros, P., & Kiuchi, K. (2017). High-energy Neutrino Emission from Short Gamma-Ray Bursts: Prospects for Coincident Detection with Gravitational Waves. The Astrophysical Journal, 848(1), L4. doi:10.3847/2041-8213/aa8d14 es_ES
dc.description.references Kimura, S. S., Takahashi, S. Z., & Toma, K. (2016). Evolution of an accretion disc in binary black hole systems. Monthly Notices of the Royal Astronomical Society, 465(4), 4406-4413. doi:10.1093/mnras/stw3036 es_ES
dc.description.references Kintscher, T. (2016). Results and prospects of IceCube’s real time alert capabilities. Journal of Physics: Conference Series, 718, 062029. doi:10.1088/1742-6596/718/6/062029 es_ES
dc.description.references Klimenko, S., Vedovato, G., Drago, M., Mazzolo, G., Mitselmakher, G., Pankow, C., … Yakushin, I. (2011). Localization of gravitational wave sources with networks of advanced detectors. Physical Review D, 83(10). doi:10.1103/physrevd.83.102001 es_ES
dc.description.references Klimenko, S., Vedovato, G., Drago, M., Salemi, F., Tiwari, V., Prodi, G. A., … Mitselmakher, G. (2016). Method for detection and reconstruction of gravitational wave transients with networks of advanced detectors. Physical Review D, 93(4). doi:10.1103/physrevd.93.042004 es_ES
dc.description.references Klimenko, S., Yakushin, I., Mercer, A., & Mitselmakher, G. (2008). A coherent method for detection of gravitational wave bursts. Classical and Quantum Gravity, 25(11), 114029. doi:10.1088/0264-9381/25/11/114029 es_ES
dc.description.references Kotake, K., Sumiyoshi, K., Yamada, S., Takiwaki, T., Kuroda, T., Suwa, Y., & Nagakura, H. (2012). Core-collapse supernovae as supercomputing science: A status report toward six-dimensional simulations with exact Boltzmann neutrino transport in full general relativity. Progress of Theoretical and Experimental Physics, 2012(1). doi:10.1093/ptep/pts009 es_ES
dc.description.references Kotera, K., & Silk, J. (2016). ULTRAHIGH-ENERGY COSMIC RAYS AND BLACK HOLE MERGERS. The Astrophysical Journal, 823(2), L29. doi:10.3847/2041-8205/823/2/l29 es_ES
dc.description.references Lazzati, D., Perna, R., Morsony, B. J., Lopez-Camara, D., Cantiello, M., Ciolfi, R., … Workman, J. C. (2018). Late Time Afterglow Observations Reveal a Collimated Relativistic Jet in the Ejecta of the Binary Neutron Star Merger GW170817. Physical Review Letters, 120(24). doi:10.1103/physrevlett.120.241103 es_ES
dc.description.references Li, W., Chornock, R., Leaman, J., Filippenko, A. V., Poznanski, D., Wang, X., … Mannucci, F. (2011). Nearby supernova rates from the Lick Observatory Supernova Search - III. The rate-size relation, and the rates as a function of galaxy Hubble type and colour. Monthly Notices of the Royal Astronomical Society, 412(3), 1473-1507. doi:10.1111/j.1365-2966.2011.18162.x es_ES
dc.description.references Loeb, A. (2016). ELECTROMAGNETIC COUNTERPARTS TO BLACK HOLE MERGERS DETECTED BY LIGO. The Astrophysical Journal, 819(2), L21. doi:10.3847/2041-8205/819/2/l21 es_ES
dc.description.references Loeb, A., & Waxman, E. (2006). The cumulative background of high energy neutrinos from starburst galaxies. Journal of Cosmology and Astroparticle Physics, 2006(05), 003-003. doi:10.1088/1475-7516/2006/05/003 es_ES
dc.description.references Mészáros, P., & Waxman, E. (2001). TeV Neutrinos from Successful and Choked Gamma-Ray Bursts. Physical Review Letters, 87(17). doi:10.1103/physrevlett.87.171102 es_ES
dc.description.references Moharana, R., Razzaque, S., Gupta, N., & Mészáros, P. (2016). High-energy neutrinos from the gravitational wave event GW150914 possibly associated with a short gamma-ray burst. Physical Review D, 93(12). doi:10.1103/physrevd.93.123011 es_ES
dc.description.references Mooley, K. P., Deller, A. T., Gottlieb, O., Nakar, E., Hallinan, G., Bourke, S., … Hotokezaka, K. (2018). Superluminal motion of a relativistic jet in the neutron-star merger GW170817. Nature, 561(7723), 355-359. doi:10.1038/s41586-018-0486-3 es_ES
dc.description.references Mooley, K. P., Nakar, E., Hotokezaka, K., Hallinan, G., Corsi, A., Frail, D. A., … Singer, L. P. (2017). A mildly relativistic wide-angle outflow in the neutron-star merger event GW170817. Nature, 554(7691), 207-210. doi:10.1038/nature25452 es_ES
dc.description.references Müller, B., Janka, H.-T., & Marek, A. (2013). A NEW MULTI-DIMENSIONAL GENERAL RELATIVISTIC NEUTRINO HYDRODYNAMICS CODE OF CORE-COLLAPSE SUPERNOVAE. III. GRAVITATIONAL WAVE SIGNALS FROM SUPERNOVA EXPLOSION MODELS. The Astrophysical Journal, 766(1), 43. doi:10.1088/0004-637x/766/1/43 es_ES
dc.description.references Murase, K., Kashiyama, K., Mészáros, P., Shoemaker, I., & Senno, N. (2016). ULTRAFAST OUTFLOWS FROM BLACK HOLE MERGERS WITH A MINIDISK. The Astrophysical Journal, 822(1), L9. doi:10.3847/2041-8205/822/1/l9 es_ES
dc.description.references Perna, R., Lazzati, D., & Giacomazzo, B. (2016). SHORT GAMMA-RAY BURSTS FROM THE MERGER OF TWO BLACK HOLES. The Astrophysical Journal, 821(1), L18. doi:10.3847/2041-8205/821/1/l18 es_ES
dc.description.references Piro, A. L., & Thrane, E. (2012). GRAVITATIONAL WAVES FROM FALLBACK ACCRETION ONTO NEUTRON STARS. The Astrophysical Journal, 761(1), 63. doi:10.1088/0004-637x/761/1/63 es_ES
dc.description.references Razzaque, S., Mészáros, P., & Waxman, E. (2003). Neutrino tomography of gamma ray bursts and massive stellar collapses. Physical Review D, 68(8). doi:10.1103/physrevd.68.083001 es_ES
dc.description.references Senno, N., Murase, K., & Mészáros, P. (2016). Choked jets and low-luminosity gamma-ray bursts as hidden neutrino sources. Physical Review D, 93(8). doi:10.1103/physrevd.93.083003 es_ES
dc.description.references Singer, L. P., Price, L. R., Farr, B., Urban, A. L., Pankow, C., Vitale, S., … Vecchio, A. (2014). THE FIRST TWO YEARS OF ELECTROMAGNETIC FOLLOW-UP WITH ADVANCED LIGO AND VIRGO. The Astrophysical Journal, 795(2), 105. doi:10.1088/0004-637x/795/2/105 es_ES
dc.description.references Stone, N. C., Metzger, B. D., & Haiman, Z. (2016). Assisted inspirals of stellar mass black holes embedded in AGN discs: solving the ‘final au problem’. Monthly Notices of the Royal Astronomical Society, 464(1), 946-954. doi:10.1093/mnras/stw2260 es_ES
dc.description.references Tamborra, I., & Ando, S. (2016). Inspecting the supernova–gamma-ray-burst connection with high-energy neutrinos. Physical Review D, 93(5). doi:10.1103/physrevd.93.053010 es_ES
dc.description.references Waxman, E., & Bahcall, J. (1997). High Energy Neutrinos from Cosmological Gamma-Ray Burst Fireballs. Physical Review Letters, 78(12), 2292-2295. doi:10.1103/physrevlett.78.2292 es_ES
dc.description.references Yakunin, K. N., Marronetti, P., Mezzacappa, A., Bruenn, S. W., Lee, C.-T., Chertkow, M. A., … Yoshida, S. (2010). Gravitational waves from core collapse supernovae. Classical and Quantum Gravity, 27(19), 194005. doi:10.1088/0264-9381/27/19/194005 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem