- -

Conformational changes and dynamics during adsorption of macromolecules with different degree of polymerization studied by Monte Carlo simulations

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Conformational changes and dynamics during adsorption of macromolecules with different degree of polymerization studied by Monte Carlo simulations

Mostrar el registro completo del ítem

Sabater I Serra, R.; Torregrosa Cabanilles, C.; Meseguer Dueñas, JM.; Gómez Ribelles, JL.; Molina Mateo, J. (2018). Conformational changes and dynamics during adsorption of macromolecules with different degree of polymerization studied by Monte Carlo simulations. Macromolecular Theory and Simulations. 27(4):1-10. https://doi.org/10.1002/mats.201800012

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/154381

Ficheros en el ítem

Metadatos del ítem

Título: Conformational changes and dynamics during adsorption of macromolecules with different degree of polymerization studied by Monte Carlo simulations
Autor: Sabater i Serra, Roser Torregrosa Cabanilles, Constantino Meseguer Dueñas, José María Gómez Ribelles, José Luís Molina Mateo, José
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Eléctrica - Departament d'Enginyeria Elèctrica
Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada
Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada
Fecha difusión:
Resumen:
[EN] Dynamics of multilayer adsorption of macromolecules with different degree of polymerization is studied by coarse¿grained Monte Carlo simulations, focusing on both the interface macromolecule¿surface and chain¿chain ...[+]
Palabras clave: Monte Carlo simulations , Coarse-grained model , Macromolecules adsorption
Derechos de uso: Cerrado
Fuente:
Macromolecular Theory and Simulations. (issn: 1022-1344 )
DOI: 10.1002/mats.201800012
Editorial:
John Wiley & Sons
Versión del editor: https://doi.org/10.1002/mats.201800012
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//MAT2015-69315-C3-1-R/ES/SOPORTES CELULARES BIODEGRADABLES CARGADOS CON IONES BIOACTIVOS PARA REGENERACION MUSCULAR/
Agradecimientos:
The support from the Ministry of Economy and Competitiveness-Spain through the Project No. MAT2015-69315-C3-1-R (including the FEDER financial support) is gratefully acknowledged. CIBER-BBN is an initiative funded by ...[+]
Tipo: Artículo

References

Wiśniewska, M., Chibowski, S., & Urban, T. (2009). Adsorption and thermodynamic properties of the alumina–polyacrylic acid solution system. Journal of Colloid and Interface Science, 334(2), 146-152. doi:10.1016/j.jcis.2009.03.006

Roiter, Y., & Minko, S. (2005). AFM Single Molecule Experiments at the Solid−Liquid Interface:  In Situ Conformation of Adsorbed Flexible Polyelectrolyte Chains. Journal of the American Chemical Society, 127(45), 15688-15689. doi:10.1021/ja0558239

Chung, Y. S., Yoo, S. H., & Kim, C. K. (2009). Enhancement of Meltdown Temperature of the Polyethylene Lithium-Ion Battery Separator via Surface Coating with Polymers Having High Thermal Resistance. Industrial & Engineering Chemistry Research, 48(9), 4346-4351. doi:10.1021/ie900096z [+]
Wiśniewska, M., Chibowski, S., & Urban, T. (2009). Adsorption and thermodynamic properties of the alumina–polyacrylic acid solution system. Journal of Colloid and Interface Science, 334(2), 146-152. doi:10.1016/j.jcis.2009.03.006

Roiter, Y., & Minko, S. (2005). AFM Single Molecule Experiments at the Solid−Liquid Interface:  In Situ Conformation of Adsorbed Flexible Polyelectrolyte Chains. Journal of the American Chemical Society, 127(45), 15688-15689. doi:10.1021/ja0558239

Chung, Y. S., Yoo, S. H., & Kim, C. K. (2009). Enhancement of Meltdown Temperature of the Polyethylene Lithium-Ion Battery Separator via Surface Coating with Polymers Having High Thermal Resistance. Industrial & Engineering Chemistry Research, 48(9), 4346-4351. doi:10.1021/ie900096z

Chibowski, S., Wiœniewska, M., & Opala Mazur, E. (2004). The effect of temperature on the adsorption and conformation of polyacrylic acid macromolecules at the ZrO2–polymer solution interface. Powder Technology, 141(1-2), 12-19. doi:10.1016/j.powtec.2004.02.014

Kronberg, B., Holmberg, K., & Lindman, B. (2014). Surface Chemistry of Surfactants and Polymers. doi:10.1002/9781118695968

Otsuka, H., Nagasaki, Y., & Kataoka, K. (2003). PEGylated nanoparticles for biological and pharmaceutical applications. Advanced Drug Delivery Reviews, 55(3), 403-419. doi:10.1016/s0169-409x(02)00226-0

Bhakta, S. A., Evans, E., Benavidez, T. E., & Garcia, C. D. (2015). Protein adsorption onto nanomaterials for the development of biosensors and analytical devices: A review. Analytica Chimica Acta, 872, 7-25. doi:10.1016/j.aca.2014.10.031

Goodman, S. B., Yao, Z., Keeney, M., & Yang, F. (2013). The future of biologic coatings for orthopaedic implants. Biomaterials, 34(13), 3174-3183. doi:10.1016/j.biomaterials.2013.01.074

Sabater i Serra, R., León-Boigues, L., Sánchez-Laosa, A., Gómez-Estrada, L., Gómez Ribelles, J. L., Salmeron-Sanchez, M., & Gallego Ferrer, G. (2016). Role of chemical crosslinking in material-driven assembly of fibronectin (nano)networks: 2D surfaces and 3D scaffolds. Colloids and Surfaces B: Biointerfaces, 148, 324-332. doi:10.1016/j.colsurfb.2016.08.044

Mnatsakanyan, H., Rico, P., Grigoriou, E., Candelas, A. M., Rodrigo-Navarro, A., Salmeron-Sanchez, M., & Sabater i Serra, R. (2015). Controlled Assembly of Fibronectin Nanofibrils Triggered by Random Copolymer Chemistry. ACS Applied Materials & Interfaces, 7(32), 18125-18135. doi:10.1021/acsami.5b05466

Appel, E. A., Tibbitt, M. W., Webber, M. J., Mattix, B. A., Veiseh, O., & Langer, R. (2015). Self-assembled hydrogels utilizing polymer–nanoparticle interactions. Nature Communications, 6(1). doi:10.1038/ncomms7295

Möddel, M., Bachmann, M., & Janke, W. (2009). Conformational Mechanics of Polymer Adsorption Transitions at Attractive Substrates. The Journal of Physical Chemistry B, 113(11), 3314-3323. doi:10.1021/jp808124v

Paul, W., Strauch, T., Rampf, F., & Binder, K. (2007). Unexpectedly normal phase behavior of single homopolymer chains. Physical Review E, 75(6). doi:10.1103/physreve.75.060801

Vogel, T., Bachmann, M., & Janke, W. (2007). Freezing and collapse of flexible polymers on regular lattices in three dimensions. Physical Review E, 76(6). doi:10.1103/physreve.76.061803

Stillinger, F. H., Head-Gordon, T., & Hirshfeld, C. L. (1993). Toy model for protein folding. Physical Review E, 48(2), 1469-1477. doi:10.1103/physreve.48.1469

Hentschke, R. (1997). Molecular modeling of adsorption and ordering at solid interfaces. Macromolecular Theory and Simulations, 6(2), 287-316. doi:10.1002/mats.1997.040060201

Lai, C. C., Shieh, J. H., Chiou, B. S., Ho, J. C., & Ku, H. C. (1994). Anisotropic Gd magnetism inTlSr2GdCu2O7−δ, (Pb0.5Cu0.5)Sr2GdCu2O7−δ, andPb2Sr2GdCu3O8+y. Physical Review B, 49(2), 1499-1502. doi:10.1103/physrevb.49.1499

Wu, C., & Wang, X. (1998). Globule-to-Coil Transition of a Single Homopolymer Chain in Solution. Physical Review Letters, 80(18), 4092-4094. doi:10.1103/physrevlett.80.4092

Paul, W., Rampf, F., Strauch, T., & Binder, K. (2008). Phase transitions in a single polymer chain: A micro-canonical analysis of Wang–Landau simulations. Computer Physics Communications, 179(1-3), 17-20. doi:10.1016/j.cpc.2008.01.005

Hodge, I. M. (1994). Enthalpy relaxation and recovery in amorphous materials. Journal of Non-Crystalline Solids, 169(3), 211-266. doi:10.1016/0022-3093(94)90321-2

Scherer, G. W. (1990). Theories of relaxation. Journal of Non-Crystalline Solids, 123(1-3), 75-89. doi:10.1016/0022-3093(90)90775-h

Euston, S. R. (2010). Molecular Dynamics Simulation of Protein Adsorption at Fluid Interfaces: A Comparison of All-Atom and Coarse-Grained Models. Biomacromolecules, 11(10), 2781-2787. doi:10.1021/bm100857k

Barrat, J.-L., Baschnagel, J., & Lyulin, A. (2010). Molecular dynamics simulations of glassy polymers. Soft Matter, 6(15), 3430. doi:10.1039/b927044b

Tallury, S. S., & Pasquinelli, M. A. (2010). Molecular Dynamics Simulations of Flexible Polymer Chains Wrapping Single-Walled Carbon Nanotubes. The Journal of Physical Chemistry B, 114(12), 4122-4129. doi:10.1021/jp908001d

Hossain, D., Tschopp, M. A., Ward, D. K., Bouvard, J. L., Wang, P., & Horstemeyer, M. F. (2010). Molecular dynamics simulations of deformation mechanisms of amorphous polyethylene. Polymer, 51(25), 6071-6083. doi:10.1016/j.polymer.2010.10.009

Binder, K., Milchev, A., & Baschnagel, J. (1996). Simulation Studies on the Dynamics of Polymers at Interfaces. Annual Review of Materials Science, 26(1), 107-134. doi:10.1146/annurev.ms.26.080196.000543

Mańka, A., Nowicki, W., & Nowicka, G. (2013). Monte Carlo simulations of a polymer chain conformation. The effectiveness of local moves algorithms and estimation of entropy. Journal of Molecular Modeling, 19(9), 3659-3670. doi:10.1007/s00894-013-1875-z

Li, Y. W., Wüst, T., & Landau, D. P. (2013). Generic folding and transition hierarchies for surface adsorption of hydrophobic-polar lattice model proteins. Physical Review E, 87(1). doi:10.1103/physreve.87.012706

Glagoleva, A., Erukhimovich, I., & Vasilevskaya, V. (2012). Void Microstructuring in Lamellar Phase of Amphiphilic Macromolecules. Macromolecular Theory and Simulations, 22(1), 31-35. doi:10.1002/mats.201200056

Foley, T. T., Shell, M. S., & Noid, W. G. (2015). The impact of resolution upon entropy and information in coarse-grained models. The Journal of Chemical Physics, 143(24), 243104. doi:10.1063/1.4929836

Harmandaris, V. A., Adhikari, N. P., van der Vegt, N. F. A., & Kremer, K. (2006). Hierarchical Modeling of Polystyrene: From Atomistic to Coarse-Grained Simulations. Macromolecules, 39(19), 6708-6719. doi:10.1021/ma0606399

Karimi-Varzaneh, H. A., & Müller-Plathe, F. (2011). Coarse-Grained Modeling for Macromolecular Chemistry. Topics in Current Chemistry, 295-321. doi:10.1007/128_2010_122

Milchev, A., & Binder, K. (1996). Static and Dynamic Properties of Adsorbed Chains at Surfaces:  Monte Carlo Simulation of a Bead-Spring Model. Macromolecules, 29(1), 343-354. doi:10.1021/ma950668b

Klushin, L. I., Polotsky, A. A., Hsu, H.-P., Markelov, D. A., Binder, K., & Skvortsov, A. M. (2013). Adsorption of a single polymer chain on a surface: Effects of the potential range. Physical Review E, 87(2). doi:10.1103/physreve.87.022604

Li, H., Qian, C.-J., & Luo, M.-B. (2011). Simulation of a flexible polymer tethered to a flat adsorbing surface. Journal of Applied Polymer Science, 124(1), 282-287. doi:10.1002/app.34576

Rybicka, J., & Sikorski, A. (2010). Adsorption of Copolymers on Solid Surfaces. Macromolecular Theory and Simulations, 19(2-3), 135-141. doi:10.1002/mats.200900063

Pandey, Y. N., & Doxastakis, M. (2012). Detailed atomistic Monte Carlo simulations of a polymer melt on a solid surface and around a nanoparticle. The Journal of Chemical Physics, 136(9), 094901. doi:10.1063/1.3689316

Yu, C., Guan, J., Chen, K., Bae, S. C., & Granick, S. (2013). Single-Molecule Observation of Long Jumps in Polymer Adsorption. ACS Nano, 7(11), 9735-9742. doi:10.1021/nn4049039

Sabater i Serra, R., Torregrosa-Cabanilles, C., Meseguer Dueñas, J. M., Gómez Ribelles, J. L., & Molina-Mateo, J. (2014). Conformation and dynamics of a diluted chain in the presence of an adsorbing wall: A simulation with the bond fluctuation model. Journal of Non-Crystalline Solids, 402, 7-15. doi:10.1016/j.jnoncrysol.2014.05.009

Carmesin, I., & Kremer, K. (1988). The bond fluctuation method: a new effective algorithm for the dynamics of polymers in all spatial dimensions. Macromolecules, 21(9), 2819-2823. doi:10.1021/ma00187a030

Deutsch, H. P., & Binder, K. (1991). Interdiffusion and self‐diffusion in polymer mixtures: A Monte Carlo study. The Journal of Chemical Physics, 94(3), 2294-2304. doi:10.1063/1.459901

Sabater i Serra, R., Torregrosa-Cabanilles, C., Meseguer-Dueñas, J. M., Gómez Ribelles, J. L., & Molina-Mateo, J. (2012). Conformation and segmental mobility of a diluted single polymer chain simulated with bond fluctuation model. Journal of Non-Crystalline Solids, 358(12-13), 1452-1458. doi:10.1016/j.jnoncrysol.2012.03.027

Molina-Mateo, J., Meseguer Dueñas, J. M., Gómez Ribelles, J. L., & Torregrosa Cabanilles, C. (2009). The distribution of the relaxation times as seen by bond fluctuation model. Polymer, 50(23), 5618-5622. doi:10.1016/j.polymer.2009.09.039

Napolitano, S., Glynos, E., & Tito, N. B. (2017). Glass transition of polymers in bulk, confined geometries, and near interfaces. Reports on Progress in Physics, 80(3), 036602. doi:10.1088/1361-6633/aa5284

Brunauer, S., Emmett, P. H., & Teller, E. (1938). Adsorption of Gases in Multimolecular Layers. Journal of the American Chemical Society, 60(2), 309-319. doi:10.1021/ja01269a023

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem