- -

Zr-MOF-808@MCM-41 catalyzed phosgene-free synthesis of polyurethane precursors

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Zr-MOF-808@MCM-41 catalyzed phosgene-free synthesis of polyurethane precursors

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Rojas-Buzo, Sergio es_ES
dc.contributor.author García-García, Pilar es_ES
dc.contributor.author Corma Canós, Avelino es_ES
dc.date.accessioned 2020-11-10T04:33:05Z
dc.date.available 2020-11-10T04:33:05Z
dc.date.issued 2019-01-07 es_ES
dc.identifier.issn 2044-4753 es_ES
dc.identifier.uri http://hdl.handle.net/10251/154505
dc.description.abstract [EN] In this work, a catalytic method is presented for the synthesis of aromatic carbamates from aromatic amines using dimethyl carbonate instead of phosgene as a green and safe reaction process. Microcrystalline Zr-MOF-808 is reported as an active and efficient heterogeneous catalyst for the selective carbamoylation of anilines and industrially relevant aromatic diamines, under mild reaction conditions with near quantitative yields. We have accomplished the selective growth of well-dispersed Zr-MOF-808 nanocrystals within the mesoporous material MCM-41. A superior catalytic performance of the Zr-MOF808@MCM-41 is demonstrated that together with increased stability stands out as an advantageous heterogeneous catalyst for polyurethane production. In situ FTIR studies have allowed a better understanding of the reaction pathway at the molecular level when the active MOF catalyst is present. es_ES
dc.description.sponsorship This work was funded by the European Union through the European Research Council (grant ERC-AdG-2014-671093, SynCatMatch) and by the Spanish government through the Severo Ochoa program (SEV-2016-0683). S.R.-B. acknowledges a PhD fellowship from the Generalitat Valenciana. The Electron Microscopy Service of the Universitat Politecnica de Valenciais acknowledged for their help in sample characterization. es_ES
dc.language Inglés es_ES
dc.publisher The Royal Society of Chemistry es_ES
dc.relation.ispartof Catalysis Science & Technology es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title Zr-MOF-808@MCM-41 catalyzed phosgene-free synthesis of polyurethane precursors es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1039/c8cy02235f es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//SEV-2016-0683/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/671093/EU/MATching zeolite SYNthesis with CATalytic activity/
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Rojas-Buzo, S.; García-García, P.; Corma Canós, A. (2019). Zr-MOF-808@MCM-41 catalyzed phosgene-free synthesis of polyurethane precursors. Catalysis Science & Technology. 9(1):146-156. https://doi.org/10.1039/c8cy02235f es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1039/c8cy02235f es_ES
dc.description.upvformatpinicio 146 es_ES
dc.description.upvformatpfin 156 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 9 es_ES
dc.description.issue 1 es_ES
dc.relation.pasarela S\387435 es_ES
dc.contributor.funder European Research Council es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder European Commission
dc.description.references Tundo, P., & Selva, M. (2002). The Chemistry of Dimethyl Carbonate. Accounts of Chemical Research, 35(9), 706-716. doi:10.1021/ar010076f es_ES
dc.description.references Fiorani, G., Perosa, A., & Selva, M. (2018). Dimethyl carbonate: a versatile reagent for a sustainable valorization of renewables. Green Chemistry, 20(2), 288-322. doi:10.1039/c7gc02118f es_ES
dc.description.references Tundo, P., Rossi, L., & Loris, A. (2005). Dimethyl Carbonate as an Ambident Electrophile. The Journal of Organic Chemistry, 70(6), 2219-2224. doi:10.1021/jo048532b es_ES
dc.description.references Han, C., & Porco. (2007). Synthesis of Carbamates and Ureas Using Zr(IV)-Catalyzed Exchange Processes. Organic Letters, 9(8), 1517-1520. doi:10.1021/ol0702728 es_ES
dc.description.references Zhang, L., Yang, Y., Xue, Y., Fu, X., An, Y., & Gao, G. (2010). Experimental and theoretical investigation of reaction of aniline with dimethyl carbonate catalyzed by acid–base bifunctional ionic liquids. Catalysis Today, 158(3-4), 279-285. doi:10.1016/j.cattod.2010.03.060 es_ES
dc.description.references Baba, T., Kobayashi, A., Yamauchi, T., Tanaka, H., Aso, S., Inomata, M., & Kawanami, Y. (2002). Catalysis Letters, 82(3/4), 193-197. doi:10.1023/a:1020566928295 es_ES
dc.description.references Reixach, E., Haak, R. M., Wershofen, S., & Vidal-Ferran, A. (2012). Alkoxycarbonylation of Industrially Relevant Anilines Using Zn4O(O2CCH3)6 as Catalyst. Industrial & Engineering Chemistry Research, 51(50), 16165-16170. doi:10.1021/ie301315k es_ES
dc.description.references Zhao, X., Kang, L., Wang, N., An, H., Li, F., & Wang, Y. (2012). Synthesis of Methyl N-Phenyl Carbamate Catalyzed by Ionic Liquid-Promoted Zinc Acetate. Industrial & Engineering Chemistry Research, 51(35), 11335-11340. doi:10.1021/ie301246q es_ES
dc.description.references Curini, M., Epifano, F., Maltese, F., & Rosati, O. (2002). Carbamate synthesis from amines and dimethyl carbonate under ytterbium triflate catalysis. Tetrahedron Letters, 43(28), 4895-4897. doi:10.1016/s0040-4039(02)00965-6 es_ES
dc.description.references Wang, G. R., Wang, Y. J., & Zhao, X. Q. (2005). Kinetic and Technological Analysis of Dimethyl Toluene-2,4-Dicarbamate Synthesis. Chemical Engineering & Technology, 28(12), 1511-1517. doi:10.1002/ceat.200500248 es_ES
dc.description.references Li, F., Wang, Y., Xue, W., & Zhao, X. (2009). Clean synthesis of methyl N-phenyl carbamate over ZnO-TiO2catalyst. Journal of Chemical Technology & Biotechnology, 84(1), 48-53. doi:10.1002/jctb.2003 es_ES
dc.description.references Grego, S., Aricò, F., & Tundo, P. (2013). Highly Selective Phosgene-Free Carbamoylation of Aniline by Dimethyl Carbonate under Continuous-Flow Conditions. Organic Process Research & Development, 17(4), 679-683. doi:10.1021/op4000048 es_ES
dc.description.references Kumar, S., & Jain, S. L. (2013). A nanostarch functionalized ionic liquid containing imidazolium cation and cobalt chelate anion for the synthesis of carbamates from amines and dimethyl carbonate. Dalton Transactions, 42(42), 15214. doi:10.1039/c3dt52127c es_ES
dc.description.references Stock, N., & Biswas, S. (2011). Synthesis of Metal-Organic Frameworks (MOFs): Routes to Various MOF Topologies, Morphologies, and Composites. Chemical Reviews, 112(2), 933-969. doi:10.1021/cr200304e es_ES
dc.description.references Zhou, H.-C., Long, J. R., & Yaghi, O. M. (2012). Introduction to Metal–Organic Frameworks. Chemical Reviews, 112(2), 673-674. doi:10.1021/cr300014x es_ES
dc.description.references Férey, G., Haouas, M., Loiseau, T., & Taulelle, F. (2013). Nanoporous Solids: How Do They Form? An In Situ Approach. Chemistry of Materials, 26(1), 299-309. doi:10.1021/cm4019875 es_ES
dc.description.references Kuppler, R. J., Timmons, D. J., Fang, Q.-R., Li, J.-R., Makal, T. A., Young, M. D., … Zhou, H.-C. (2009). Potential applications of metal-organic frameworks. Coordination Chemistry Reviews, 253(23-24), 3042-3066. doi:10.1016/j.ccr.2009.05.019 es_ES
dc.description.references García-García, P., Moreno, J. M., Díaz, U., Bruix, M., & Corma, A. (2016). Organic–inorganic supramolecular solid catalyst boosts organic reactions in water. Nature Communications, 7(1). doi:10.1038/ncomms10835 es_ES
dc.description.references García-García, P., Müller, M., & Corma, A. (2014). MOF catalysis in relation to their homogeneous counterparts and conventional solid catalysts. Chemical Science, 5(8), 2979. doi:10.1039/c4sc00265b es_ES
dc.description.references Rojas-Buzo, S., García-García, P., & Corma, A. (2017). Remarkable Acceleration of Benzimidazole Synthesis and Cyanosilylation Reactions in a Supramolecular Solid Catalyst. ChemCatChem, 9(6), 997-1004. doi:10.1002/cctc.201601407 es_ES
dc.description.references Liang, J., Liang, Z., Zou, R., & Zhao, Y. (2017). Heterogeneous Catalysis in Zeolites, Mesoporous Silica, and Metal-Organic Frameworks. Advanced Materials, 29(30), 1701139. doi:10.1002/adma.201701139 es_ES
dc.description.references Zhu, L., Liu, X.-Q., Jiang, H.-L., & Sun, L.-B. (2017). Metal–Organic Frameworks for Heterogeneous Basic Catalysis. Chemical Reviews, 117(12), 8129-8176. doi:10.1021/acs.chemrev.7b00091 es_ES
dc.description.references Rimoldi, M., Howarth, A. J., DeStefano, M. R., Lin, L., Goswami, S., Li, P., … Farha, O. K. (2016). Catalytic Zirconium/Hafnium-Based Metal–Organic Frameworks. ACS Catalysis, 7(2), 997-1014. doi:10.1021/acscatal.6b02923 es_ES
dc.description.references Liu, Y., Klet, R. C., Hupp, J. T., & Farha, O. (2016). Probing the correlations between the defects in metal–organic frameworks and their catalytic activity by an epoxide ring-opening reaction. Chemical Communications, 52(50), 7806-7809. doi:10.1039/c6cc03727e es_ES
dc.description.references Moon, S.-Y., Liu, Y., Hupp, J. T., & Farha, O. K. (2015). Instantaneous Hydrolysis of Nerve-Agent Simulants with a Six-Connected Zirconium-Based Metal-Organic Framework. Angewandte Chemie International Edition, 54(23), 6795-6799. doi:10.1002/anie.201502155 es_ES
dc.description.references Rojas-Buzo, S., García-García, P., & Corma, A. (2017). Catalytic Transfer Hydrogenation of Biomass-Derived Carbonyls over Hafnium-Based Metal-Organic Frameworks. ChemSusChem, 11(2), 432-438. doi:10.1002/cssc.201701708 es_ES
dc.description.references Plessers, E., Fu, G., Tan, C., De Vos, D., & Roeffaers, M. (2016). Zr-Based MOF-808 as Meerwein–Ponndorf–Verley Reduction Catalyst for Challenging Carbonyl Compounds. Catalysts, 6(7), 104. doi:10.3390/catal6070104 es_ES
dc.description.references Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2010). Metal organic frameworks as heterogeneous catalysts for the selective N-methylation of aromatic primary amines with dimethyl carbonate. Applied Catalysis A: General, 378(1), 19-25. doi:10.1016/j.apcata.2010.01.042 es_ES
dc.description.references Cliffe, M. J., Wan, W., Zou, X., Chater, P. A., Kleppe, A. K., Tucker, M. G., … Goodwin, A. L. (2014). Correlated defect nanoregions in a metal–organic framework. Nature Communications, 5(1). doi:10.1038/ncomms5176 es_ES
dc.description.references Furukawa, H., Gándara, F., Zhang, Y.-B., Jiang, J., Queen, W. L., Hudson, M. R., & Yaghi, O. M. (2014). Water Adsorption in Porous Metal–Organic Frameworks and Related Materials. Journal of the American Chemical Society, 136(11), 4369-4381. doi:10.1021/ja500330a es_ES
dc.description.references Hu, Z., Peng, Y., Gao, Y., Qian, Y., Ying, S., Yuan, D., … Zhao, D. (2016). Direct Synthesis of Hierarchically Porous Metal–Organic Frameworks with High Stability and Strong Brønsted Acidity: The Decisive Role of Hafnium in Efficient and Selective Fructose Dehydration. Chemistry of Materials, 28(8), 2659-2667. doi:10.1021/acs.chemmater.6b00139 es_ES
dc.description.references Li, F., Min, R., Li, J., Gao, L., Xue, W., Wang, Y., & Zhao, X. (2014). Condensation Reaction of Methyl N-Phenylcarbamate with Formaldehyde over Hβ Catalyst. Industrial & Engineering Chemistry Research, 53(13), 5406-5412. doi:10.1021/ie404045n es_ES
dc.description.references Luz, I., Soukri, M., & Lail, M. (2017). Confining Metal–Organic Framework Nanocrystals within Mesoporous Materials: A General Approach via «Solid-State» Synthesis. Chemistry of Materials, 29(22), 9628-9638. doi:10.1021/acs.chemmater.7b02042 es_ES
dc.description.references Cirujano, F. G., Luz, I., Soukri, M., Van Goethem, C., Vankelecom, I. F. J., Lail, M., & De Vos, D. E. (2017). Boosting the Catalytic Performance of Metal-Organic Frameworks for Steroid Transformations by Confinement within a Mesoporous Scaffold. Angewandte Chemie International Edition, 56(43), 13302-13306. doi:10.1002/anie.201706721 es_ES
dc.description.references He, J., Duan, X., & Li, C. (2001). Improving the stability of MCM-41 by monolayer dispersion of a metal oxide. Materials Chemistry and Physics, 71(3), 221-225. doi:10.1016/s0254-0584(01)00297-8 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem