- -

Reconfigurable Resonator in Decoupled Empty SIW Technology Using Liquid Crystal Material

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Reconfigurable Resonator in Decoupled Empty SIW Technology Using Liquid Crystal Material

Show full item record

Sánchez-Marín, JR.; Bachiller Martin, MC.; Nova-Giménez, V.; Boria Esbert, VE. (2019). Reconfigurable Resonator in Decoupled Empty SIW Technology Using Liquid Crystal Material. Electronics Letters. 55(16):907-910. https://doi.org/10.1049/el.2019.1088

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/154512

Files in this item

Item Metadata

Title: Reconfigurable Resonator in Decoupled Empty SIW Technology Using Liquid Crystal Material
Author: Sánchez-Marín, Juan Rafael Bachiller Martin, Maria Carmen Nova-Giménez, Vicente Boria Esbert, Vicente Enrique
UPV Unit: Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions
Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia
Issued date:
Abstract:
[EN] This paper presents a novel continuously tunable microwave resonator based on Liquid Crystal (LC) material. The reconfigurable device is implemented in Decoupled Empty Substrate Integrated Waveguide (DESIW) technology. ...[+]
Subjects: Substrate integrated waveguides , Q-factor , Microwave resonators , Liquid crystals , Reconfigurable resonator , Decoupled empty SIW technology , Liquid crystal material , Novel continuously tunable microwave resonator , Reconfigurable device , DESIW , Centre frequency , Measured insertion loss , LC materials , Decoupled empty substrate integrated waveguide technology , Magnetic DC biasing , Electric DC biasing , Frequency 600 , 0 MHz , Frequency 7 , 0 GHz , Loss 4 , 3 dB to 6 , 8 dB
Copyrigths: Reserva de todos los derechos
Source:
Electronics Letters. (issn: 0013-5194 )
DOI: 10.1049/el.2019.1088
Publisher:
Institution of Electrical Engineers
Publisher version: https://doi.org/10.1049/el.2019.1088
Project ID:
info:eu-repo/grantAgreement/MINECO//TEC2016-75934-C4-1-R/ES/DEMOSTRADORES TECNOLOGICOS DE FILTROS Y MULTIPLEXORES CON RESPUESTAS SELECTIVAS Y SINTONIZABLES EN NUEVAS GUIAS COMPACTAS PARA APLICACIONES ESPACIALES/
info:eu-repo/grantAgreement/MECD//FPU14%2F00150/ES/FPU14%2F00150/
info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2015%2F005/ES/AVANCES EN COMPONENTES (CIRCUITOS Y ANTENAS) DE MICROONDAS Y ONDAS MILIMETRICAS PARA FUTUROS SISTEMAS DE COMUNICACIONES ESPACIALES (FUTUR-SAT)/
Description: "This paper is a postprint of a paper submitted to and accepted for publication in Electronics Letters and is subject to Institution of Engineering and Technology Copyright. The copy of record is available at IET Digital Library"
Thanks:
This work was partially funded by the Generalitat Valenciana research project PROMETEOII/2015/005, by the Ministerio de Educación, Cultura y Deporte (Spain) under the Fellowship Program for Training University Professors ...[+]
Type: Artículo

References

Sekar, V., Armendariz, M., & Entesari, K. (2011). A 1.2–1.6-GHz Substrate-Integrated-Waveguide RF MEMS Tunable Filter. IEEE Transactions on Microwave Theory and Techniques, 59(4), 866-876. doi:10.1109/tmtt.2011.2109006

Adhikari, S., Ban, Y.-J., & Wu, K. (2011). Magnetically Tunable Ferrite Loaded Substrate Integrated Waveguide Cavity Resonator. IEEE Microwave and Wireless Components Letters, 21(3), 139-141. doi:10.1109/lmwc.2010.2102746

Prasetiadi, A. E., Karabey, O. H., Weickhmann, C., Franke, T., Hu, W., Jost, M., … Jakoby, R. (2015). Continuously tunable substrate integrated waveguide bandpass filter in liquid crystal technology with magnetic biasing. Electronics Letters, 51(20), 1584-1585. doi:10.1049/el.2015.2494 [+]
Sekar, V., Armendariz, M., & Entesari, K. (2011). A 1.2–1.6-GHz Substrate-Integrated-Waveguide RF MEMS Tunable Filter. IEEE Transactions on Microwave Theory and Techniques, 59(4), 866-876. doi:10.1109/tmtt.2011.2109006

Adhikari, S., Ban, Y.-J., & Wu, K. (2011). Magnetically Tunable Ferrite Loaded Substrate Integrated Waveguide Cavity Resonator. IEEE Microwave and Wireless Components Letters, 21(3), 139-141. doi:10.1109/lmwc.2010.2102746

Prasetiadi, A. E., Karabey, O. H., Weickhmann, C., Franke, T., Hu, W., Jost, M., … Jakoby, R. (2015). Continuously tunable substrate integrated waveguide bandpass filter in liquid crystal technology with magnetic biasing. Electronics Letters, 51(20), 1584-1585. doi:10.1049/el.2015.2494

Yaghmaee, P., Fumeaux, C., Bates, B., Manabe, A., Karabey, O. H., & Jakoby, R. (2012). Frequency tunable S-band resonator using nematic liquid crystal. Electronics Letters, 48(13), 798. doi:10.1049/el.2012.1366

Sánchez, J. R., Bachiller, C., Esteban, H., Belenguer, A., Nova, V., & Boria, V. (2017). New decoupled empty substrate integrated waveguide realisation. Electronics Letters, 53(17), 1203-1205. doi:10.1049/el.2017.1240

Yang, D.-K., & Wu, S.-T. (2006). Fundamentals of Liquid Crystal Devices. doi:10.1002/0470032030

Belenguer, A., Esteban, H., & Boria, V. E. (2014). Novel Empty Substrate Integrated Waveguide for High-Performance Microwave Integrated Circuits. IEEE Transactions on Microwave Theory and Techniques, 62(4), 832-839. doi:10.1109/tmtt.2014.2309637

Munk, B. A. (2000). Frequency Selective Surfaces. doi:10.1002/0471723770

Esteban, H., Belenguer, A., Sanchez, J. R., Bachiller, C., & Boria, V. E. (2017). Improved Low Reflection Transition From Microstrip Line to Empty Substrate-Integrated Waveguide. IEEE Microwave and Wireless Components Letters, 27(8), 685-687. doi:10.1109/lmwc.2017.2724011

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record