- -

W-Nb-O oxides with tunable acid properties as efficient catalysts for the transformation of biomass-derived oxygenates in aqueous systems

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

W-Nb-O oxides with tunable acid properties as efficient catalysts for the transformation of biomass-derived oxygenates in aqueous systems

Show full item record

Delgado-Muñoz, D.; Fernández-Arroyo, A.; Domine, ME.; García-González, E.; López Nieto, JM. (2019). W-Nb-O oxides with tunable acid properties as efficient catalysts for the transformation of biomass-derived oxygenates in aqueous systems. Catalysis Science & Technology. 9(12):3126-3136. https://doi.org/10.1039/c9cy00367c

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/154804

Files in this item

Item Metadata

Title: W-Nb-O oxides with tunable acid properties as efficient catalysts for the transformation of biomass-derived oxygenates in aqueous systems
Author: Delgado-Muñoz, Daniel Fernández-Arroyo, Alberto Domine, Marcelo Eduardo García-González, Ester López Nieto, José Manuel
UPV Unit: Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Issued date:
Abstract:
[EN] W-Nb-O oxide bronzes, prepared hydrothermally, have been characterized and studied as catalysts for both the gas-phase dehydration of glycerol and the liquid-phase selective condensation of light oxygenates derived ...[+]
Subjects: W-Nb-O oxide catalyst , Acid properties , Transformation of biomass-derived oxygenates , Aqueous phase
Copyrigths: Reserva de todos los derechos
Source:
Catalysis Science & Technology. (issn: 2044-4753 )
DOI: 10.1039/c9cy00367c
Publisher:
The Royal Society of Chemistry
Publisher version: https://doi.org/10.1039/c9cy00367c
Project ID:
info:eu-repo/grantAgreement/MINECO//CTQ2015-68951-C3-1-R/ES/TRATAMIENTOS CATALITICOS AVANZADOS PARA LA VALORIZACION DE LA BIOMASA Y LA ELIMINACION DE RESIDUOS ASOCIADOS/
...[+]
info:eu-repo/grantAgreement/MINECO//CTQ2015-68951-C3-1-R/ES/TRATAMIENTOS CATALITICOS AVANZADOS PARA LA VALORIZACION DE LA BIOMASA Y LA ELIMINACION DE RESIDUOS ASOCIADOS/
GV/PROMETEO/2018/006
MINECO/SVP-2016-0683
MINECO/SEV-2016-0683
MICINN/MAT2016-78362-C4-4-R
CICYT/RTI2018-099668-B-C21
MINISTERIO DE ECONOMIA Y EMPRESA/CTQ2015-67592-P
[-]
Thanks:
Financial support by the Spanish Government (CTQ-2015-68951-C3-1, CTQ-2015-67592, MAT2016-78362-C4-4-R and SEV-2016-0683) and Generalitat Valenciana (GVA, PROMETEO/2018/006) is gratefully acknowledged. A. F.-A. and D. D. ...[+]
Type: Artículo

References

Huber, G. W., Iborra, S., & Corma, A. (2006). Synthesis of Transportation Fuels from Biomass:  Chemistry, Catalysts, and Engineering. Chemical Reviews, 106(9), 4044-4098. doi:10.1021/cr068360d

Corma, A., Iborra, S., & Velty, A. (2007). Chemical Routes for the Transformation of Biomass into Chemicals. Chemical Reviews, 107(6), 2411-2502. doi:10.1021/cr050989d

Tuck, C. O., Perez, E., Horvath, I. T., Sheldon, R. A., & Poliakoff, M. (2012). Valorization of Biomass: Deriving More Value from Waste. Science, 337(6095), 695-699. doi:10.1126/science.1218930 [+]
Huber, G. W., Iborra, S., & Corma, A. (2006). Synthesis of Transportation Fuels from Biomass:  Chemistry, Catalysts, and Engineering. Chemical Reviews, 106(9), 4044-4098. doi:10.1021/cr068360d

Corma, A., Iborra, S., & Velty, A. (2007). Chemical Routes for the Transformation of Biomass into Chemicals. Chemical Reviews, 107(6), 2411-2502. doi:10.1021/cr050989d

Tuck, C. O., Perez, E., Horvath, I. T., Sheldon, R. A., & Poliakoff, M. (2012). Valorization of Biomass: Deriving More Value from Waste. Science, 337(6095), 695-699. doi:10.1126/science.1218930

Alonso, D. M., Bond, J. Q., & Dumesic, J. A. (2010). Catalytic conversion of biomass to biofuels. Green Chemistry, 12(9), 1493. doi:10.1039/c004654j

Huber, G. W., & Corma, A. (2007). Synergies between Bio- and Oil Refineries for the Production of Fuels from Biomass. Angewandte Chemie International Edition, 46(38), 7184-7201. doi:10.1002/anie.200604504

Lari, G. M., Pastore, G., Haus, M., Ding, Y., Papadokonstantakis, S., Mondelli, C., & Pérez-Ramírez, J. (2018). Environmental and economical perspectives of a glycerol biorefinery. Energy & Environmental Science, 11(5), 1012-1029. doi:10.1039/c7ee03116e

Sun, D., Yamada, Y., Sato, S., & Ueda, W. (2017). Glycerol as a potential renewable raw material for acrylic acid production. Green Chemistry, 19(14), 3186-3213. doi:10.1039/c7gc00358g

Cespi, D., Passarini, F., Mastragostino, G., Vassura, I., Larocca, S., Iaconi, A., … Cavani, F. (2015). Glycerol as feedstock in the synthesis of chemicals: a life cycle analysis for acrolein production. Green Chemistry, 17(1), 343-355. doi:10.1039/c4gc01497a

Katryniok, B., Paul, S., Bellière-Baca, V., Rey, P., & Dumeignil, F. (2010). Glycerol dehydration to acrolein in the context of new uses of glycerol. Green Chemistry, 12(12), 2079. doi:10.1039/c0gc00307g

Venderbosch, R., & Prins, W. (2010). Fast pyrolysis technology development. Biofuels, Bioproducts and Biorefining, 4(2), 178-208. doi:10.1002/bbb.205

Graça, I., Lopes, J. M., Cerqueira, H. S., & Ribeiro, M. F. (2013). Bio-oils Upgrading for Second Generation Biofuels. Industrial & Engineering Chemistry Research, 52(1), 275-287. doi:10.1021/ie301714x

Asadieraghi, M., Wan Daud, W. M. A., & Abbas, H. F. (2014). Model compound approach to design process and select catalysts for in-situ bio-oil upgrading. Renewable and Sustainable Energy Reviews, 36, 286-303. doi:10.1016/j.rser.2014.04.050

Pinheiro, A., Hudebine, D., Dupassieux, N., & Geantet, C. (2009). Impact of Oxygenated Compounds from Lignocellulosic Biomass Pyrolysis Oils on Gas Oil Hydrotreatment. Energy & Fuels, 23(2), 1007-1014. doi:10.1021/ef800507z

Bui, V. N., Toussaint, G., Laurenti, D., Mirodatos, C., & Geantet, C. (2009). Co-processing of pyrolisis bio oils and gas oil for new generation of bio-fuels: Hydrodeoxygenation of guaïacol and SRGO mixed feed. Catalysis Today, 143(1-2), 172-178. doi:10.1016/j.cattod.2008.11.024

Wang, F., Dubois, J.-L., & Ueda, W. (2010). Catalytic performance of vanadium pyrophosphate oxides (VPO) in the oxidative dehydration of glycerol. Applied Catalysis A: General, 376(1-2), 25-32. doi:10.1016/j.apcata.2009.11.031

Foo, G. S., Wei, D., Sholl, D. S., & Sievers, C. (2014). Role of Lewis and Brønsted Acid Sites in the Dehydration of Glycerol over Niobia. ACS Catalysis, 4(9), 3180-3192. doi:10.1021/cs5006376

Nogueira, F. G. E., Asencios, Y. J. O., Rodella, C. B., Porto, A. L. M., & Assaf, E. M. (2016). Alternative route for the synthesis of high surface-area η-Al2O3/Nb2O5 catalyst from aluminum waste. Materials Chemistry and Physics, 184, 23-30. doi:10.1016/j.matchemphys.2016.08.032

Massa, M., Andersson, A., Finocchio, E., & Busca, G. (2013). Gas-phase dehydration of glycerol to acrolein over Al2O3-, SiO2-, and TiO2-supported Nb- and W-oxide catalysts. Journal of Catalysis, 307, 170-184. doi:10.1016/j.jcat.2013.07.022

Massa, M., Andersson, A., Finocchio, E., Busca, G., Lenrick, F., & Wallenberg, L. R. (2013). Performance of ZrO 2 -supported Nb- and W-oxide in the gas-phase dehydration of glycerol to acrolein. Journal of Catalysis, 297, 93-109. doi:10.1016/j.jcat.2012.09.021

Dalil, M., Carnevali, D., Dubois, J.-L., & Patience, G. S. (2015). Transient acrolein selectivity and carbon deposition study of glycerol dehydration over WO3/TiO2 catalyst. Chemical Engineering Journal, 270, 557-563. doi:10.1016/j.cej.2015.02.058

Dalil, M., Carnevali, D., Edake, M., Auroux, A., Dubois, J.-L., & Patience, G. S. (2016). Gas phase dehydration of glycerol to acrolein: Coke on WO3/TiO2 reduces by-products. Journal of Molecular Catalysis A: Chemical, 421, 146-155. doi:10.1016/j.molcata.2016.05.022

Soriano, M. D., Concepción, P., Nieto, J. M. L., Cavani, F., Guidetti, S., & Trevisanut, C. (2011). Tungsten-Vanadium mixed oxides for the oxidehydration of glycerol into acrylic acid. Green Chemistry, 13(10), 2954. doi:10.1039/c1gc15622e

Murayama, T., Nakajima, K., Hirata, J., Omata, K., Hensen, E. J. M., & Ueda, W. (2017). Hydrothermal synthesis of a layered-type W–Ti–O mixed metal oxide and its solid acid activity. Catalysis Science & Technology, 7(1), 243-250. doi:10.1039/c6cy02198k

La Salvia, N., Delgado, D., Ruiz-Rodríguez, L., Nadji, L., Massó, A., & Nieto, J. M. L. (2017). V- and Nb-containing tungsten bronzes catalysts for the aerobic transformation of ethanol and glycerol. Bulk and supported materials. Catalysis Today, 296, 2-9. doi:10.1016/j.cattod.2017.04.009

Chieregato, A., Basile, F., Concepción, P., Guidetti, S., Liosi, G., Soriano, M. D., … Nieto, J. M. L. (2012). Glycerol oxidehydration into acrolein and acrylic acid over W–V–Nb–O bronzes with hexagonal structure. Catalysis Today, 197(1), 58-65. doi:10.1016/j.cattod.2012.06.024

Chieregato, A., Soriano, M. D., García-González, E., Puglia, G., Basile, F., Concepción, P., … Cavani, F. (2014). Multielement Crystalline and Pseudocrystalline Oxides as Efficient Catalysts for the Direct Transformation of Glycerol into Acrylic Acid. ChemSusChem, 8(2), 398-406. doi:10.1002/cssc.201402721

Chieregato, A., Bandinelli, C., Concepción, P., Soriano, M. D., Puzzo, F., Basile, F., … Nieto, J. M. L. (2016). Structure-Reactivity Correlations in Vanadium-Containing Catalysts for One-Pot Glycerol Oxidehydration to Acrylic Acid. ChemSusChem, 10(1), 234-244. doi:10.1002/cssc.201600954

Deleplanque, J., Dubois, J.-L., Devaux, J.-F., & Ueda, W. (2010). Production of acrolein and acrylic acid through dehydration and oxydehydration of glycerol with mixed oxide catalysts. Catalysis Today, 157(1-4), 351-358. doi:10.1016/j.cattod.2010.04.012

Delgado, D., Chieregato, A., Soriano, M. D., Rodríguez-Aguado, E., Ruiz-Rodríguez, L., Rodríguez-Castellón, E., & López Nieto, J. M. (2018). Influence of Phase Composition of Bulk Tungsten Vanadium Oxides on the Aerobic Transformation of Methanol and Glycerol. European Journal of Inorganic Chemistry, 2018(10), 1204-1211. doi:10.1002/ejic.201800059

Pham, T. N., Sooknoi, T., Crossley, S. P., & Resasco, D. E. (2013). Ketonization of Carboxylic Acids: Mechanisms, Catalysts, and Implications for Biomass Conversion. ACS Catalysis, 3(11), 2456-2473. doi:10.1021/cs400501h

Faba, L., Díaz, E., & Ordóñez, S. (2014). One-pot Aldol Condensation and Hydrodeoxygenation of Biomass-derived Carbonyl Compounds for Biodiesel Synthesis. ChemSusChem, 7(10), 2816-2820. doi:10.1002/cssc.201402236

Gaertner, C. A., Serrano-Ruiz, J. C., Braden, D. J., & Dumesic, J. A. (2009). Catalytic coupling of carboxylic acids by ketonization as a processing step in biomass conversion. Journal of Catalysis, 266(1), 71-78. doi:10.1016/j.jcat.2009.05.015

Gangadharan, A., Shen, M., Sooknoi, T., Resasco, D. E., & Mallinson, R. G. (2010). Condensation reactions of propanal over CexZr1−xO2 mixed oxide catalysts. Applied Catalysis A: General, 385(1-2), 80-91. doi:10.1016/j.apcata.2010.06.048

Wang, S., & Iglesia, E. (2017). Experimental and theoretical assessment of the mechanism and site requirements for ketonization of carboxylic acids on oxides. Journal of Catalysis, 345, 183-206. doi:10.1016/j.jcat.2016.11.006

Wang, S., Goulas, K., & Iglesia, E. (2016). Condensation and esterification reactions of alkanals, alkanones, and alkanols on TiO2: Elementary steps, site requirements, and synergistic effects of bifunctional strategies. Journal of Catalysis, 340, 302-320. doi:10.1016/j.jcat.2016.05.026

Fernández-Arroyo, A., Delgado, D., Domine, M. E., & López-Nieto, J. M. (2017). Upgrading of oxygenated compounds present in aqueous biomass-derived feedstocks over NbOx-based catalysts. Catalysis Science & Technology, 7(23), 5495-5499. doi:10.1039/c7cy00916j

Nakajima, K., Hirata, J., Kim, M., Gupta, N. K., Murayama, T., Yoshida, A., … Ueda, W. (2017). Facile Formation of Lactic Acid from a Triose Sugar in Water over Niobium Oxide with a Deformed Orthorhombic Phase. ACS Catalysis, 8(1), 283-290. doi:10.1021/acscatal.7b03003

Goto, Y., Shimizu, K., Kon, K., Toyao, T., Murayama, T., & Ueda, W. (2016). NH3-efficient ammoxidation of toluene by hydrothermally synthesized layered tungsten-vanadium complex metal oxides. Journal of Catalysis, 344, 346-353. doi:10.1016/j.jcat.2016.10.013

Omata, K., Matsumoto, K., Murayama, T., & Ueda, W. (2016). Direct oxidative transformation of glycerol to acrylic acid over Nb-based complex metal oxide catalysts. Catalysis Today, 259, 205-212. doi:10.1016/j.cattod.2015.07.016

Blanch-Raga, N., Soriano, M. D., Palomares, A. E., Concepción, P., Martínez-Triguero, J., & Nieto, J. M. L. (2013). Catalytic abatement of trichloroethylene over Mo and/or W-based bronzes. Applied Catalysis B: Environmental, 130-131, 36-43. doi:10.1016/j.apcatb.2012.10.016

BOTELLA, P. (2004). Selective oxidative dehydrogenation of ethane on MoVTeNbO mixed metal oxide catalysts. Journal of Catalysis, 225(2), 428-438. doi:10.1016/j.jcat.2004.04.024

Yun, Y., Araujo, J. R., Melaet, G., Baek, J., Archanjo, B. S., Oh, M., … Somorjai, G. A. (2017). Activation of Tungsten Oxide for Propane Dehydrogenation and Its High Catalytic Activity and Selectivity. Catalysis Letters, 147(3), 622-632. doi:10.1007/s10562-016-1915-2

Yun, Y. S., Lee, K. R., Park, H., Kim, T. Y., Yun, D., Han, J. W., & Yi, J. (2014). Rational Design of a Bifunctional Catalyst for the Oxydehydration of Glycerol: A Combined Theoretical and Experimental Study. ACS Catalysis, 5(1), 82-94. doi:10.1021/cs501307v

Soriano, M. D., Chieregato, A., Zamora, S., Basile, F., Cavani, F., & López Nieto, J. M. (2015). Promoted Hexagonal Tungsten Bronzes as Selective Catalysts in the Aerobic Transformation of Alcohols: Glycerol and Methanol. Topics in Catalysis, 59(2-4), 178-185. doi:10.1007/s11244-015-0440-7

Nadji, L., Massó, A., Delgado, D., Issaadi, R., Rodriguez-Aguado, E., Rodriguez-Castellón, E., & Nieto, J. M. L. (2018). Gas phase dehydration of glycerol to acrolein over WO3-based catalysts prepared by non-hydrolytic sol–gel synthesis. RSC Advances, 8(24), 13344-13352. doi:10.1039/c8ra01575a

Emeis, C. A. (1993). Determination of Integrated Molar Extinction Coefficients for Infrared Absorption Bands of Pyridine Adsorbed on Solid Acid Catalysts. Journal of Catalysis, 141(2), 347-354. doi:10.1006/jcat.1993.1145

Murayama, T., Kuramata, N., Takatama, S., Nakatani, K., Izumi, S., Yi, X., & Ueda, W. (2012). Synthesis of porous and acidic complex metal oxide catalyst based on group 5 and 6 elements. Catalysis Today, 185(1), 224-229. doi:10.1016/j.cattod.2011.10.029

HIBST, H., ROSOWSKI, F., & COX, G. (2006). New Cs-containing Mo–V4+ based oxides with the structure of the M1 phase—Base for new catalysts for the direct alkane activation. Catalysis Today, 117(1-3), 234-241. doi:10.1016/j.cattod.2006.05.045

Shannon, R. D. (1976). Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica Section A, 32(5), 751-767. doi:10.1107/s0567739476001551

Szilágyi, I. M., Madarász, J., Pokol, G., Király, P., Tárkányi, G., Saukko, S., … Varga-Josepovits, K. (2008). Stability and Controlled Composition of Hexagonal WO3. Chemistry of Materials, 20(12), 4116-4125. doi:10.1021/cm800668x

Maczka, M., Hanuza, J., Kojima, S., Majchrowski, A., & van der Maas, J. H. (2001). Vibrational spectra of KNbW2O9 hexagonal tungsten bronze. Journal of Raman Spectroscopy, 32(4), 287-291. doi:10.1002/jrs.697

McConnell, A. A., Aderson, J. S., & Rao, C. N. R. (1976). Raman spectra of niobium oxides. Spectrochimica Acta Part A: Molecular Spectroscopy, 32(5), 1067-1076. doi:10.1016/0584-8539(76)80291-7

Jehng, J. M., & Wachs, I. E. (1991). Structural chemistry and Raman spectra of niobium oxides. Chemistry of Materials, 3(1), 100-107. doi:10.1021/cm00013a025

Jehng, J.-M., & Wachs, I. E. (1990). Niobium Oxalate. ACS Symposium Series, 232-242. doi:10.1021/bk-1990-0437.ch021

Soriano, M. D., García-González, E., Concepción, P., Rodella, C. B., & López Nieto, J. M. (2017). Self-Organized Transformation from Hexagonal to Orthorhombic Bronze of Cs–Nb–W–O Mixed Oxides Prepared Hydrothermally. Crystal Growth & Design, 17(12), 6320-6331. doi:10.1021/acs.cgd.7b00999

Oshihara, K., Hisano, T., & Ueda, W. (2001). Topics in Catalysis, 15(2/4), 153-160. doi:10.1023/a:1016630307377

Suwannakarn, K., Lotero, E., & Goodwin, J. G. (2007). Solid Brønsted Acid Catalysis in the Gas-Phase Esterification of Acetic Acid. Industrial & Engineering Chemistry Research, 46(22), 7050-7056. doi:10.1021/ie070536u

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record