- -

Machine Learning Prediction Approach to Enhance Congestion Control in 5G IoT Environment

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Machine Learning Prediction Approach to Enhance Congestion Control in 5G IoT Environment

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Najm, Ihab Ahmed es_ES
dc.contributor.author Hamoud, Alaa Khalaf es_ES
dc.contributor.author Lloret, Jaime es_ES
dc.contributor.author Bosch Roig, Ignacio es_ES
dc.date.accessioned 2020-11-27T04:31:14Z
dc.date.available 2020-11-27T04:31:14Z
dc.date.issued 2019-07 es_ES
dc.identifier.uri http://hdl.handle.net/10251/155959
dc.description.abstract [EN] The 5G network is a next-generation wireless form of communication and the latest mobile technology. In practice, 5G utilizes the Internet of Things (IoT) to work in high-tra_ c networks with multiple nodes/ sensors in an attempt to transmit their packets to a destination simultaneously, which is a characteristic of IoT applications. Due to this, 5G o_ ers vast bandwidth, low delay, and extremely high data transfer speed. Thus, 5G presents opportunities and motivations for utilizing next-generation protocols, especially the stream control transmission protocol (SCTP). However, the congestion control mechanisms of the conventional SCTP negatively influence overall performance. Moreover, existing mechanisms contribute to reduce 5G and IoT performance. Thus, a new machine learning model based on a decision tree (DT) algorithm is proposed in this study to predict optimal enhancement of congestion control in the wireless sensors of 5G IoT networks. The model was implemented on a training dataset to determine the optimal parametric setting in a 5G environment. The dataset was used to train the machine learning model and enable the prediction of optimal alternatives that can enhance the performance of the congestion control approach. The DT approach can be used for other functions, especially prediction and classification. DT algorithms provide graphs that can be used by any user to understand the prediction approach. The DT C4.5 provided promising results, with more than 92% precision and recall. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Electronics es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Machine learning es_ES
dc.subject Decision tree algorithm es_ES
dc.subject IoT es_ES
dc.subject WSN es_ES
dc.subject C4.5 es_ES
dc.subject Congestion control es_ES
dc.subject 5G network es_ES
dc.subject.classification INGENIERIA TELEMATICA es_ES
dc.subject.classification TEORIA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.title Machine Learning Prediction Approach to Enhance Congestion Control in 5G IoT Environment es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/electronics8060607 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.description.bibliographicCitation Najm, IA.; Hamoud, AK.; Lloret, J.; Bosch Roig, I. (2019). Machine Learning Prediction Approach to Enhance Congestion Control in 5G IoT Environment. Electronics. 8(6):1-23. https://doi.org/10.3390/electronics8060607 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/electronics8060607 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 23 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 8 es_ES
dc.description.issue 6 es_ES
dc.identifier.eissn 2079-9292 es_ES
dc.relation.pasarela S\407431 es_ES
dc.description.references Rahem, A. A. T., Ismail, M., Najm, I. A., & Balfaqih, M. (2017). Topology sense and graph-based TSG: efficient wireless ad hoc routing protocol for WANET. Telecommunication Systems, 65(4), 739-754. doi:10.1007/s11235-016-0242-7 es_ES
dc.description.references Aalsalem, M. Y., Khan, W. Z., Gharibi, W., Khan, M. K., & Arshad, Q. (2018). Wireless Sensor Networks in oil and gas industry: Recent advances, taxonomy, requirements, and open challenges. Journal of Network and Computer Applications, 113, 87-97. doi:10.1016/j.jnca.2018.04.004 es_ES
dc.description.references Sunny, A., Panchal, S., Vidhani, N., Krishnasamy, S., Anand, S. V. R., Hegde, M., … Kumar, A. (2017). A generic controller for managing TCP transfers in IEEE 802.11 infrastructure WLANs. Journal of Network and Computer Applications, 93, 13-26. doi:10.1016/j.jnca.2017.05.006 es_ES
dc.description.references Jain, R. (1990). Congestion control in computer networks: issues and trends. IEEE Network, 4(3), 24-30. doi:10.1109/65.56532 es_ES
dc.description.references Kafi, M. A., Djenouri, D., Ben-Othman, J., & Badache, N. (2014). Congestion Control Protocols in Wireless Sensor Networks: A Survey. IEEE Communications Surveys & Tutorials, 16(3), 1369-1390. doi:10.1109/surv.2014.021714.00123 es_ES
dc.description.references Floyd, S. (2000). Congestion Control Principles. doi:10.17487/rfc2914 es_ES
dc.description.references Qazi, I. A., & Znati, T. (2011). On the design of load factor based congestion control protocols for next-generation networks. Computer Networks, 55(1), 45-60. doi:10.1016/j.comnet.2010.07.010 es_ES
dc.description.references Katabi, D., Handley, M., & Rohrs, C. (2002). Congestion control for high bandwidth-delay product networks. ACM SIGCOMM Computer Communication Review, 32(4), 89-102. doi:10.1145/964725.633035 es_ES
dc.description.references Wang, Y., Rozhnova, N., Narayanan, A., Oran, D., & Rhee, I. (2013). An improved hop-by-hop interest shaper for congestion control in named data networking. ACM SIGCOMM Computer Communication Review, 43(4), 55-60. doi:10.1145/2534169.2491233 es_ES
dc.description.references Mirza, M., Sommers, J., Barford, P., & Zhu, X. (2010). A Machine Learning Approach to TCP Throughput Prediction. IEEE/ACM Transactions on Networking, 18(4), 1026-1039. doi:10.1109/tnet.2009.2037812 es_ES
dc.description.references Taherkhani, N., & Pierre, S. (2016). Centralized and Localized Data Congestion Control Strategy for Vehicular Ad Hoc Networks Using a Machine Learning Clustering Algorithm. IEEE Transactions on Intelligent Transportation Systems, 17(11), 3275-3285. doi:10.1109/tits.2016.2546555 es_ES
dc.description.references Fadlullah, Z. M., Tang, F., Mao, B., Kato, N., Akashi, O., Inoue, T., & Mizutani, K. (2017). State-of-the-Art Deep Learning: Evolving Machine Intelligence Toward Tomorrow’s Intelligent Network Traffic Control Systems. IEEE Communications Surveys & Tutorials, 19(4), 2432-2455. doi:10.1109/comst.2017.2707140 es_ES
dc.description.references Gonzalez-Landero, F., Garcia-Magarino, I., Lacuesta, R., & Lloret, J. (2018). PriorityNet App: A Mobile Application for Establishing Priorities in the Context of 5G Ultra-Dense Networks. IEEE Access, 6, 14141-14150. doi:10.1109/access.2018.2811900 es_ES
dc.description.references Lloret, J., Parra, L., Taha, M., & Tomás, J. (2017). An architecture and protocol for smart continuous eHealth monitoring using 5G. Computer Networks, 129, 340-351. doi:10.1016/j.comnet.2017.05.018 es_ES
dc.description.references Khan, I., Zafar, M., Jan, M., Lloret, J., Basheri, M., & Singh, D. (2018). Spectral and Energy Efficient Low-Overhead Uplink and Downlink Channel Estimation for 5G Massive MIMO Systems. Entropy, 20(2), 92. doi:10.3390/e20020092 es_ES
dc.description.references Elappila, M., Chinara, S., & Parhi, D. R. (2018). Survivable Path Routing in WSN for IoT applications. Pervasive and Mobile Computing, 43, 49-63. doi:10.1016/j.pmcj.2017.11.004 es_ES
dc.description.references Singh, K., Singh, K., Son, L. H., & Aziz, A. (2018). Congestion control in wireless sensor networks by hybrid multi-objective optimization algorithm. Computer Networks, 138, 90-107. doi:10.1016/j.comnet.2018.03.023 es_ES
dc.description.references Shelke, M., Malhotra, A., & Mahalle, P. N. (2017). Congestion-Aware Opportunistic Routing Protocol in Wireless Sensor Networks. Smart Innovation, Systems and Technologies, 63-72. doi:10.1007/978-981-10-5544-7_7 es_ES
dc.description.references Godoy, P. D., Cayssials, R. L., & García Garino, C. G. (2018). Communication channel occupation and congestion in wireless sensor networks. Computers & Electrical Engineering, 72, 846-858. doi:10.1016/j.compeleceng.2017.12.049 es_ES
dc.description.references Najm, I. A., Ismail, M., Lloret, J., Ghafoor, K. Z., Zaidan, B. B., & Rahem, A. A. T. (2015). Improvement of SCTP congestion control in the LTE-A network. Journal of Network and Computer Applications, 58, 119-129. doi:10.1016/j.jnca.2015.09.003 es_ES
dc.description.references Najm, I. A., Ismail, M., & Abed, G. A. (2014). High-Performance Mobile Technology LTE-A using the Stream Control Transmission Protocol: A Systematic Review and Hands-on Analysis. Journal of Applied Sciences, 14(19), 2194-2218. doi:10.3923/jas.2014.2194.2218 es_ES
dc.description.references Katuwal, R., Suganthan, P. N., & Zhang, L. (2018). An ensemble of decision trees with random vector functional link networks for multi-class classification. Applied Soft Computing, 70, 1146-1153. doi:10.1016/j.asoc.2017.09.020 es_ES
dc.description.references Gómez, S. E., Martínez, B. C., Sánchez-Esguevillas, A. J., & Hernández Callejo, L. (2017). Ensemble network traffic classification: Algorithm comparison and novel ensemble scheme proposal. Computer Networks, 127, 68-80. doi:10.1016/j.comnet.2017.07.018 es_ES
dc.description.references Hasan, M., Hossain, E., & Niyato, D. (2013). Random access for machine-to-machine communication in LTE-advanced networks: issues and approaches. IEEE Communications Magazine, 51(6), 86-93. doi:10.1109/mcom.2013.6525600 es_ES
dc.description.references Liang, D., Zhang, Z., & Peng, M. (2015). Access Point Reselection and Adaptive Cluster Splitting-Based Indoor Localization in Wireless Local Area Networks. IEEE Internet of Things Journal, 2(6), 573-585. doi:10.1109/jiot.2015.2453419 es_ES
dc.description.references Park, H., Haghani, A., Samuel, S., & Knodler, M. A. (2018). Real-time prediction and avoidance of secondary crashes under unexpected traffic congestion. Accident Analysis & Prevention, 112, 39-49. doi:10.1016/j.aap.2017.11.025 es_ES
dc.description.references Shu, J., Liu, S., Liu, L., Zhan, L., & Hu, G. (2017). Research on Link Quality Estimation Mechanism for Wireless Sensor Networks Based on Support Vector Machine. Chinese Journal of Electronics, 26(2), 377-384. doi:10.1049/cje.2017.01.013 es_ES
dc.description.references Riekstin, A. C., Januário, G. C., Rodrigues, B. B., Nascimento, V. T., Carvalho, T. C. M. B., & Meirosu, C. (2016). Orchestration of energy efficiency capabilities in networks. Journal of Network and Computer Applications, 59, 74-87. doi:10.1016/j.jnca.2015.06.015 es_ES
dc.description.references Adi, E., Baig, Z., & Hingston, P. (2017). Stealthy Denial of Service (DoS) attack modelling and detection for HTTP/2 services. Journal of Network and Computer Applications, 91, 1-13. doi:10.1016/j.jnca.2017.04.015 es_ES
dc.description.references Stimpfling, T., Bélanger, N., Cherkaoui, O., Béliveau, A., Béliveau, L., & Savaria, Y. (2017). Extensions to decision-tree based packet classification algorithms to address new classification paradigms. Computer Networks, 122, 83-95. doi:10.1016/j.comnet.2017.04.021 es_ES
dc.description.references Singh, D., Nigam, S. P., Agrawal, V. P., & Kumar, M. (2016). Vehicular traffic noise prediction using soft computing approach. Journal of Environmental Management, 183, 59-66. doi:10.1016/j.jenvman.2016.08.053 es_ES
dc.description.references Xia, Y., Chen, W., Liu, X., Zhang, L., Li, X., & Xiang, Y. (2017). Adaptive Multimedia Data Forwarding for Privacy Preservation in Vehicular Ad-Hoc Networks. IEEE Transactions on Intelligent Transportation Systems, 18(10), 2629-2641. doi:10.1109/tits.2017.2653103 es_ES
dc.description.references Tariq, F., & Baig, S. (2017). Machine Learning Based Botnet Detection in Software Defined Networks. International Journal of Security and Its Applications, 11(11), 1-12. doi:10.14257/ijsia.2017.11.11.01 es_ES
dc.description.references Wu, T., Petrangeli, S., Huysegems, R., Bostoen, T., & De Turck, F. (2017). Network-based video freeze detection and prediction in HTTP adaptive streaming. Computer Communications, 99, 37-47. doi:10.1016/j.comcom.2016.08.005 es_ES
dc.description.references Pham, T. N. D., & Yeo, C. K. (2018). Adaptive trust and privacy management framework for vehicular networks. Vehicular Communications, 13, 1-12. doi:10.1016/j.vehcom.2018.04.006 es_ES
dc.description.references Mohamed, M. F., Shabayek, A. E.-R., El-Gayyar, M., & Nassar, H. (2019). An adaptive framework for real-time data reduction in AMI. Journal of King Saud University - Computer and Information Sciences, 31(3), 392-402. doi:10.1016/j.jksuci.2018.02.012 es_ES
dc.description.references Louvieris, P., Clewley, N., & Liu, X. (2013). Effects-based feature identification for network intrusion detection. Neurocomputing, 121, 265-273. doi:10.1016/j.neucom.2013.04.038 es_ES
dc.description.references Verma, P. K., Verma, R., Prakash, A., Agrawal, A., Naik, K., Tripathi, R., … Abogharaf, A. (2016). Machine-to-Machine (M2M) communications: A survey. Journal of Network and Computer Applications, 66, 83-105. doi:10.1016/j.jnca.2016.02.016 es_ES
dc.description.references Hamoud, A. K., Hashim, A. S., & Awadh, W. A. (2018). Predicting Student Performance in Higher Education Institutions Using Decision Tree Analysis. International Journal of Interactive Multimedia and Artificial Intelligence, 5(2), 26. doi:10.9781/ijimai.2018.02.004 es_ES
dc.description.references Lavanya, D. (2012). Ensemble Decision Tree Classifier For Breast Cancer Data. International Journal of Information Technology Convergence and Services, 2(1), 17-24. doi:10.5121/ijitcs.2012.2103 es_ES
dc.description.references Polat, K., & Güneş, S. (2007). Classification of epileptiform EEG using a hybrid system based on decision tree classifier and fast Fourier transform. Applied Mathematics and Computation, 187(2), 1017-1026. doi:10.1016/j.amc.2006.09.022 es_ES
dc.description.references Cayirci, E., Tezcan, H., Dogan, Y., & Coskun, V. (2006). Wireless sensor networks for underwater survelliance systems. Ad Hoc Networks, 4(4), 431-446. doi:10.1016/j.adhoc.2004.10.008 es_ES
dc.description.references Mezzavilla, M., Zhang, M., Polese, M., Ford, R., Dutta, S., Rangan, S., & Zorzi, M. (2018). End-to-End Simulation of 5G mmWave Networks. IEEE Communications Surveys & Tutorials, 20(3), 2237-2263. doi:10.1109/comst.2018.2828880 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem