- -

Antifouling zwitterionic pSBMA-MSN particles for biomedical applications

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Antifouling zwitterionic pSBMA-MSN particles for biomedical applications

Mostrar el registro completo del ítem

Beltrán-Osuna, A.; Ródenas Rochina, J.; Gómez Ribelles, JL.; Perilla-Perilla, JE. (2019). Antifouling zwitterionic pSBMA-MSN particles for biomedical applications. Polymers for Advanced Technologies. 30(3):688-697. https://doi.org/10.1002/pat.4505

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/156025

Ficheros en el ítem

Metadatos del ítem

Título: Antifouling zwitterionic pSBMA-MSN particles for biomedical applications
Autor: Beltrán-Osuna, A.A. Ródenas Rochina, Joaquín Gómez Ribelles, José Luís Perilla-Perilla, Jairo Ernesto
Entidad UPV: Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada
Fecha difusión:
Resumen:
[EN] Mesoporous silica nanoparticles (MSNs) are one of the most promising nanocarriers in biomedicine. Nonetheless, surface modification has been pointed out as a condition necessary for drug delivery applications, where ...[+]
Palabras clave: Antifouling , ATRP , Drug carrier , MSN , Sulfobetaine methacrylate , Zwitterionic
Derechos de uso: Cerrado
Fuente:
Polymers for Advanced Technologies. (issn: 1042-7147 )
DOI: 10.1002/pat.4505
Editorial:
John Wiley & Sons
Versión del editor: https://doi.org/10.1002/pat.4505
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//MAT2016-76039-C4-1-R/ES/BIOMATERIALES PIEZOELECTRICOS PARA LA DIFERENCIACION CELULAR EN INTERFASES CELULA-MATERIAL ELECTRICAMENTE ACTIVAS/
info:eu-repo/grantAgreement/UNAL//DIB 201010021438/
Agradecimientos:
José L. Gómez Ribelles acknowledges the support of the Ministerio de Economía y Competitividad, MINECO (research number MAT2016-76039-C4-1-R). CIBER-BBN is an initiative funded by the VI National R&D&i Plan 2008-2011, ...[+]
Tipo: Artículo

References

Gold Book I IUPAC Compendium of Chemical Terminology-Gold Book 2014

Owens, G. J., Singh, R. K., Foroutan, F., Alqaysi, M., Han, C.-M., Mahapatra, C., … Knowles, J. C. (2016). Sol–gel based materials for biomedical applications. Progress in Materials Science, 77, 1-79. doi:10.1016/j.pmatsci.2015.12.001

Baeza, A., Manzano, M., Colilla, M., & Vallet-Regí, M. (2016). Recent advances in mesoporous silica nanoparticles for antitumor therapy: our contribution. Biomaterials Science, 4(5), 803-813. doi:10.1039/c6bm00039h [+]
Gold Book I IUPAC Compendium of Chemical Terminology-Gold Book 2014

Owens, G. J., Singh, R. K., Foroutan, F., Alqaysi, M., Han, C.-M., Mahapatra, C., … Knowles, J. C. (2016). Sol–gel based materials for biomedical applications. Progress in Materials Science, 77, 1-79. doi:10.1016/j.pmatsci.2015.12.001

Baeza, A., Manzano, M., Colilla, M., & Vallet-Regí, M. (2016). Recent advances in mesoporous silica nanoparticles for antitumor therapy: our contribution. Biomaterials Science, 4(5), 803-813. doi:10.1039/c6bm00039h

Butler, K. S., Durfee, P. N., Theron, C., Ashley, C. E., Carnes, E. C., & Brinker, C. J. (2016). Protocells: Modular Mesoporous Silica Nanoparticle-Supported Lipid Bilayers for Drug Delivery. Small, 12(16), 2173-2185. doi:10.1002/smll.201502119

Peng, H., Dong, R., Wang, S., Zhang, Z., Luo, M., Bai, C., … Xiong, H. (2013). A pH-responsive nano-carrier with mesoporous silica nanoparticles cores and poly(acrylic acid) shell-layers: Fabrication, characterization and properties for controlled release of salidroside. International Journal of Pharmaceutics, 446(1-2), 153-159. doi:10.1016/j.ijpharm.2013.01.071

Wang, L.-S., Wu, L.-C., Lu, S.-Y., Chang, L.-L., Teng, I.-T., Yang, C.-M., & Ho, J. A. (2010). Biofunctionalized Phospholipid-Capped Mesoporous Silica Nanoshuttles for Targeted Drug Delivery: Improved Water Suspensibility and Decreased Nonspecific Protein Binding. ACS Nano, 4(8), 4371-4379. doi:10.1021/nn901376h

Beltrán-Osuna, Á. A., Cao, B., Cheng, G., Jana, S. C., Espe, M. P., & Lama, B. (2012). New Antifouling Silica Hydrogel. Langmuir, 28(25), 9700-9706. doi:10.1021/la301561j

Beltrán-Osuna, Á. A., & Perilla, J. E. (2015). Colloidal and spherical mesoporous silica particles: synthesis and new technologies for delivery applications. Journal of Sol-Gel Science and Technology, 77(2), 480-496. doi:10.1007/s10971-015-3874-2

Shao, Q., & Jiang, S. (2014). Molecular Understanding and Design of Zwitterionic Materials. Advanced Materials, 27(1), 15-26. doi:10.1002/adma.201404059

Zheng, L., Sundaram, H. S., Wei, Z., Li, C., & Yuan, Z. (2017). Applications of zwitterionic polymers. Reactive and Functional Polymers, 118, 51-61. doi:10.1016/j.reactfunctpolym.2017.07.006

Izquierdo-Barba, I., Colilla, M., & Vallet-Regí, M. (2016). Zwitterionic ceramics for biomedical applications. Acta Biomaterialia, 40, 201-211. doi:10.1016/j.actbio.2016.02.027

Laschewsky, A. (2014). Structures and Synthesis of Zwitterionic Polymers. Polymers, 6(5), 1544-1601. doi:10.3390/polym6051544

Zhang, Z., Chen, S., Chang, Y., & Jiang, S. (2006). Surface Grafted Sulfobetaine Polymers via Atom Transfer Radical Polymerization as Superlow Fouling Coatings. The Journal of Physical Chemistry B, 110(22), 10799-10804. doi:10.1021/jp057266i

Zhang, Z., Chao, T., Chen, S., & Jiang, S. (2006). Superlow Fouling Sulfobetaine and Carboxybetaine Polymers on Glass Slides. Langmuir, 22(24), 10072-10077. doi:10.1021/la062175d

Carr, L. R., Xue, H., & Jiang, S. (2011). Functionalizable and nonfouling zwitterionic carboxybetaine hydrogels with a carboxybetaine dimethacrylate crosslinker. Biomaterials, 32(4), 961-968. doi:10.1016/j.biomaterials.2010.09.067

Yang, W., Chen, S., Cheng, G., Vaisocherová, H., Xue, H., Li, W., … Jiang, S. (2008). Film Thickness Dependence of Protein Adsorption from Blood Serum and Plasma onto Poly(sulfobetaine)-Grafted Surfaces. Langmuir, 24(17), 9211-9214. doi:10.1021/la801487f

Cheng, G., Li, G., Xue, H., Chen, S., Bryers, J. D., & Jiang, S. (2009). Zwitterionic carboxybetaine polymer surfaces and their resistance to long-term biofilm formation. Biomaterials, 30(28), 5234-5240. doi:10.1016/j.biomaterials.2009.05.058

Liu, Q., Li, W., Singh, A., Cheng, G., & Liu, L. (2014). Two amino acid-based superlow fouling polymers: Poly(lysine methacrylamide) and poly(ornithine methacrylamide). Acta Biomaterialia, 10(7), 2956-2964. doi:10.1016/j.actbio.2014.02.046

Zheng, L., Sun, Z., Li, C., Wei, Z., Jain, P., & Wu, K. (2017). Progress in biodegradable zwitterionic materials. Polymer Degradation and Stability, 139, 1-19. doi:10.1016/j.polymdegradstab.2017.03.015

Wang, F., Yang, J., & Zhao, J. (2015). Understanding anti-polyelectrolyte behavior of a well-defined polyzwitterion at the single-chain level. Polymer International, 64(8), 999-1005. doi:10.1002/pi.4907

Shao, Q., & Jiang, S. (2014). Influence of Charged Groups on the Properties of Zwitterionic Moieties: A Molecular Simulation Study. The Journal of Physical Chemistry B, 118(27), 7630-7637. doi:10.1021/jp5027114

Ji, Y.-L., An, Q.-F., Weng, X.-D., Hung, W.-S., Lee, K.-R., & Gao, C.-J. (2018). Microstructure and performance of zwitterionic polymeric nanoparticle/polyamide thin-film nanocomposite membranes for salts/organics separation. Journal of Membrane Science, 548, 559-571. doi:10.1016/j.memsci.2017.11.057

Wang, C., Li, Z., Chen, J., Zhong, Y., Yin, Y., Cao, L., & Wu, H. (2018). Zwitterionic functionalized «cage-like» porous organic frameworks for nanofiltration membrane with high efficiency water transport channels and anti-fouling property. Journal of Membrane Science, 548, 194-202. doi:10.1016/j.memsci.2017.11.013

Ou, H., Cheng, T., Zhang, Y., Liu, J., Ding, Y., Zhen, J., … Shi, L. (2018). Surface-adaptive zwitterionic nanoparticles for prolonged blood circulation time and enhanced cellular uptake in tumor cells. Acta Biomaterialia, 65, 339-348. doi:10.1016/j.actbio.2017.10.034

Guo, S., Jańczewski, D., Zhu, X., Quintana, R., He, T., & Neoh, K. G. (2015). Surface charge control for zwitterionic polymer brushes: Tailoring surface properties to antifouling applications. Journal of Colloid and Interface Science, 452, 43-53. doi:10.1016/j.jcis.2015.04.013

Izquierdo-Barba, I., Sánchez-Salcedo, S., Colilla, M., Feito, M. J., Ramírez-Santillán, C., Portolés, M. T., & Vallet-Regí, M. (2011). Inhibition of bacterial adhesion on biocompatible zwitterionic SBA-15 mesoporous materials. Acta Biomaterialia, 7(7), 2977-2985. doi:10.1016/j.actbio.2011.03.005

Schepelina, O., & Zharov, I. (2007). PNIPAAM-Modified Nanoporous Colloidal Films with Positive and Negative Temperature Gating. Langmuir, 23(25), 12704-12709. doi:10.1021/la702008j

Tu, H., Hong, L., Anthony, S. M., Braun, P. V., & Granick, S. (2007). Brush-Sheathed Particles Diffusing at Brush-Coated Surfaces in the Thermally Responsive PNIPAAm System. Langmuir, 23(5), 2322-2325. doi:10.1021/la062219i

Shahbazi, M.-A., Almeida, P. V., Mäkilä, E. M., Kaasalainen, M. H., Salonen, J. J., Hirvonen, J. T., & Santos, H. A. (2014). Augmented cellular trafficking and endosomal escape of porous silicon nanoparticles via zwitterionic bilayer polymer surface engineering. Biomaterials, 35(26), 7488-7500. doi:10.1016/j.biomaterials.2014.05.020

Zhu, J., Zhao, X., & He, C. (2015). Zwitterionic SiO2 nanoparticles as novel additives to improve the antifouling properties of PVDF membranes. RSC Advances, 5(66), 53653-53659. doi:10.1039/c5ra05571g

Dong, Z., Mao, J., Wang, D., Yang, M., Wang, W., Bo, S., & Ji, X. (2013). Tunable Dual-Thermoresponsive Phase Behavior of Zwitterionic Polysulfobetaine Copolymers Containing Poly(N,N -dimethylaminoethyl methacrylate)-Grafted Silica Nanoparticles in Aqueous Solution. Macromolecular Chemistry and Physics, 215(1), 111-120. doi:10.1002/macp.201300552

Zhang, L., & Sun, Y. (2018). Poly(carboxybetaine methacrylate)-grafted silica nanoparticle: A novel carrier for enzyme immobilization. Biochemical Engineering Journal, 132, 122-129. doi:10.1016/j.bej.2018.01.013

Huang, G., Xiong, Z., Qin, H., Zhu, J., Sun, Z., Zhang, Y., … Zou, H. (2014). Synthesis of zwitterionic polymer brushes hybrid silica nanoparticles via controlled polymerization for highly efficient enrichment of glycopeptides. Analytica Chimica Acta, 809, 61-68. doi:10.1016/j.aca.2013.11.049

Teng, I.-T., Chang, Y.-J., Wang, L.-S., Lu, H.-Y., Wu, L.-C., Yang, C.-M., … Ho, J. A. (2013). Phospholipid-functionalized mesoporous silica nanocarriers for selective photodynamic therapy of cancer. Biomaterials, 34(30), 7462-7470. doi:10.1016/j.biomaterials.2013.06.001

Sun, J.-T., Yu, Z.-Q., Hong, C.-Y., & Pan, C.-Y. (2012). Biocompatible Zwitterionic Sulfobetaine Copolymer-Coated Mesoporous Silica Nanoparticles for Temperature-Responsive Drug Release. Macromolecular Rapid Communications, 33(9), 811-818. doi:10.1002/marc.201100876

Chen, C.-Y., & Wang, H.-L. (2014). Dual Thermo- and pH-Responsive Zwitterionic Sulfobataine Copolymers for Oral Delivery System. Macromolecular Rapid Communications, 35(17), 1534-1540. doi:10.1002/marc.201400161

Khatoon, S., Han, H. S., Lee, M., Lee, H., Jung, D.-W., Thambi, T., … Park, J. H. (2016). Zwitterionic mesoporous nanoparticles with a bioresponsive gatekeeper for cancer therapy. Acta Biomaterialia, 40, 282-292. doi:10.1016/j.actbio.2016.04.011

Sanchez-Salcedo, S., Vallet-Regí, M., Shahin, S. A., Glackin, C. A., & Zink, J. I. (2018). Mesoporous core-shell silica nanoparticles with anti-fouling properties for ovarian cancer therapy. Chemical Engineering Journal, 340, 114-124. doi:10.1016/j.cej.2017.12.116

Suzuki, H., Murou, M., Kitano, H., Ohno, K., & Saruwatari, Y. (2011). Silica particles coated with zwitterionic polymer brush: Formation of colloidal crystals and anti-biofouling properties in aqueous medium. Colloids and Surfaces B: Biointerfaces, 84(1), 111-116. doi:10.1016/j.colsurfb.2010.12.023

Tarn, D., Xue, M., & Zink, J. I. (2013). pH-Responsive Dual Cargo Delivery from Mesoporous Silica Nanoparticles with a Metal-Latched Nanogate. Inorganic Chemistry, 52(4), 2044-2049. doi:10.1021/ic3024265

Croissant, J., & Zink, J. I. (2012). Nanovalve-Controlled Cargo Release Activated by Plasmonic Heating. Journal of the American Chemical Society, 134(18), 7628-7631. doi:10.1021/ja301880x

Trébosc, J., Wiench, J. W., Huh, S., Lin, V. S.-Y., & Pruski, M. (2005). Solid-State NMR Study of MCM-41-type Mesoporous Silica Nanoparticles. Journal of the American Chemical Society, 127(9), 3057-3068. doi:10.1021/ja043567e

Jhan, Y.-Y., & Tsay, R.-Y. (2014). Salt effects on the hydration behavior of zwitterionic poly(sulfobetaine methacrylate) aqueous solutions. Journal of the Taiwan Institute of Chemical Engineers, 45(6), 3139-3145. doi:10.1016/j.jtice.2014.08.022

Tooney, N. M., Mosesson, M. W., Amrani, D. L., Hainfeld, J. F., & Wall, J. S. (1983). Solution and surface effects on plasma fibronectin structure. Journal of Cell Biology, 97(6), 1686-1692. doi:10.1083/jcb.97.6.1686

Barbosa, L. R. S., Ortore, M. G., Spinozzi, F., Mariani, P., Bernstorff, S., & Itri, R. (2010). The Importance of Protein-Protein Interactions on the pH-Induced Conformational Changes of Bovine Serum Albumin: A Small-Angle X-Ray Scattering Study. Biophysical Journal, 98(1), 147-157. doi:10.1016/j.bpj.2009.09.056

Webster, T. J. (2012). Nanomedicine. doi:10.1533/9780857096449

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem