- -

The Antimalarial Chloroquine Reduces the Burden of Persistent Atrial Fibrillation

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

The Antimalarial Chloroquine Reduces the Burden of Persistent Atrial Fibrillation

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Tobón, Catalina es_ES
dc.contributor.author Palacio, Laura C. es_ES
dc.contributor.author Chidipi, Bojjibadu es_ES
dc.contributor.author Slough, Diana P. es_ES
dc.contributor.author Tran, Thanh es_ES
dc.contributor.author Tran, Nhi es_ES
dc.contributor.author Reiser, Michelle es_ES
dc.contributor.author Lin, Yu-Shan es_ES
dc.contributor.author Herweg, Bengt es_ES
dc.contributor.author Sayad, Dany es_ES
dc.contributor.author Saiz Rodríguez, Francisco Javier es_ES
dc.contributor.author Noujaim, Sami es_ES
dc.date.accessioned 2020-12-11T04:34:15Z
dc.date.available 2020-12-11T04:34:15Z
dc.date.issued 2019-11-27 es_ES
dc.identifier.uri http://hdl.handle.net/10251/156861
dc.description.abstract [EN] In clinical practice, reducing the burden of persistent atrial fibrillation by pharmacological means is challenging. We explored if blocking the background and the acetylcholine-activated inward rectifier potassium currents (I-K1 and I-KACh) could be antiarrhythmic in persistent atrial fibrillation. We thus tested the hypothesis that blocking I-K1 and I-KACh with chloroquine decreases the burden of persistent atrial fibrillation. We used patch clamp to determine the IC50 of I-K1 and I-KACh block by chloroquine and molecular modeling to simulate the interaction between chloroquine and Kir2.1 and Kir3.1, the molecular correlates of I-K1 and I-KACh. We then tested, as a proof of concept, if oral chloroquine administration to a patient with persistent atrial fibrillation can decrease the arrhythmia burden. We also simulated the effects of chloroquine in a 3D model of human atria with persistent atrial fibrillation. In patch clamp the IC50 of I-K1 block by chloroquine was similar to that of I-KACh. A 14-day regimen of oral chloroquine significantly decreased the burden of persistent atrial fibrillation in a patient. Mathematical simulations of persistent atrial fibrillation in a 3D model of human atria suggested that chloroquine prolonged the action potential duration, leading to failure of reentrant excitation, and the subsequent termination of the arrhythmia. The combined block of I-K1 and I-KACh can be a targeted therapeutic strategy for persistent atrial fibrillation. es_ES
dc.description.sponsorship This work was supported in part by National Institutes of Health grants R21HL138064, R01HL129136, by the Direccion General de Politica Cientifica de la Generalitat Valenciana (PROMETEO 2016/088), and by the ACM SIGHPC/Intel Computational & Data Science fellowship. es_ES
dc.language Inglés es_ES
dc.publisher Frontiers Media SA es_ES
dc.relation.ispartof Frontiers in Pharmacology es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Chloroquine es_ES
dc.subject Persistent atrial fibrillation es_ES
dc.subject Potassium inward rectifiers es_ES
dc.subject I-KACh es_ES
dc.subject I-K1 es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.title The Antimalarial Chloroquine Reduces the Burden of Persistent Atrial Fibrillation es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3389/fphar.2019.01392 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NIH//R01HL129136/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NIH//R21HL138064/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2016%2F088/ES/MODELOS COMPUTACIONALES PERSONALIZADOS MULTI-ESCALA PARA LA OPTIMIZACION DEL DIAGNOSTICO Y TRATAMIENTO DE ARRITMIAS CARDIACAS (PERSONALISED DIGITAL HEART)/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica es_ES
dc.description.bibliographicCitation Tobón, C.; Palacio, LC.; Chidipi, B.; Slough, DP.; Tran, T.; Tran, N.; Reiser, M.... (2019). The Antimalarial Chloroquine Reduces the Burden of Persistent Atrial Fibrillation. Frontiers in Pharmacology. 10:1-12. https://doi.org/10.3389/fphar.2019.01392 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3389/fphar.2019.01392 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 12 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 10 es_ES
dc.identifier.eissn 1663-9812 es_ES
dc.identifier.pmid 31827438 es_ES
dc.identifier.pmcid PMC6890839 es_ES
dc.relation.pasarela S\413187 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder National Institutes of Health, EEUU es_ES
dc.contributor.funder Association for Computing Machinery's Special Interest Group on High Performance Computing es_ES
dc.description.references Al-Bari, M. A. A. (2015). Chloroquine analogues in drug discovery: new directions of uses, mechanisms of actions and toxic manifestations from malaria to multifarious diseases. Journal of Antimicrobial Chemotherapy, 70(6), 1608-1621. doi:10.1093/jac/dkv018 es_ES
dc.description.references Atienza, F., & Jalife, J. (2007). Reentry and atrial fibrillation. Heart Rhythm, 4(3), S13-S16. doi:10.1016/j.hrthm.2006.12.004 es_ES
dc.description.references Bai, J., Gladding, P. A., Stiles, M. K., Fedorov, V. V., & Zhao, J. (2018). Ionic and cellular mechanisms underlying TBX5/PITX2 insufficiency-induced atrial fibrillation: Insights from mathematical models of human atrial cells. Scientific Reports, 8(1). doi:10.1038/s41598-018-33958-y es_ES
dc.description.references Burrell, Z. L., & Martinez, A. C. (1958). Chloroquine and Hydroxychloroquine in the Treatment of Cardiac Arrhythmias. New England Journal of Medicine, 258(16), 798-800. doi:10.1056/nejm195804172581608 es_ES
dc.description.references Chung, M. K., Shemanski, L., Sherman, D. G., Greene, H. L., Hogan, D. B., Kellen, J. C., … Wyse, D. G. (2005). Functional Status in Rate- Versus Rhythm-Control Strategies for Atrial Fibrillation. Journal of the American College of Cardiology, 46(10), 1891-1899. doi:10.1016/j.jacc.2005.07.040 es_ES
dc.description.references Colman, M. A., Pinali, C., Trafford, A. W., Zhang, H., & Kitmitto, A. (2017). A computational model of spatio-temporal cardiac intracellular calcium handling with realistic structure and spatial flux distribution from sarcoplasmic reticulum and t-tubule reconstructions. PLOS Computational Biology, 13(8), e1005714. doi:10.1371/journal.pcbi.1005714 es_ES
dc.description.references Courtemanche, M., Ramirez, R. J., & Nattel, S. (1998). Ionic mechanisms underlying human atrial action potential properties: insights from a mathematical model. American Journal of Physiology-Heart and Circulatory Physiology, 275(1), H301-H321. doi:10.1152/ajpheart.1998.275.1.h301 es_ES
dc.description.references DE GROOT, N. M. S., & SCHALIJ, M. J. (2006). Fragmented, Long-Duration, Low-Amplitude Electrograms Characterize the Origin of Focal Atrial Tachycardia. Journal of Cardiovascular Electrophysiology, 17(10), 1086-1092. doi:10.1111/j.1540-8167.2006.00568.x es_ES
dc.description.references Dobrev, D., & Nattel, S. (2011). New insights into the molecular basis of atrial fibrillation: mechanistic and therapeutic implications. Cardiovascular Research, 89(4), 689-691. doi:10.1093/cvr/cvr021 es_ES
dc.description.references Filgueiras-Rama, D., Martins, R. P., Mironov, S., Yamazaki, M., Calvo, C. J., Ennis, S. R., … Jalife, J. (2012). Chloroquine Terminates Stretch-Induced Atrial Fibrillation More Effectively Than Flecainide in the Sheep Heart. Circulation: Arrhythmia and Electrophysiology, 5(3), 561-570. doi:10.1161/circep.111.966820 es_ES
dc.description.references Grandi, E., Pandit, S. V., Voigt, N., Workman, A. J., Dobrev, D., Jalife, J., & Bers, D. M. (2011). Human Atrial Action Potential and Ca2+Model. Circulation Research, 109(9), 1055-1066. doi:10.1161/circresaha.111.253955 es_ES
dc.description.references Greenwood, J. R., Calkins, D., Sullivan, A. P., & Shelley, J. C. (2010). Towards the comprehensive, rapid, and accurate prediction of the favorable tautomeric states of drug-like molecules in aqueous solution. Journal of Computer-Aided Molecular Design, 24(6-7), 591-604. doi:10.1007/s10822-010-9349-1 es_ES
dc.description.references Hagens, V. E., Van Veldhuisen, D. J., Kamp, O., Rienstra, M., Bosker, H. A., Veeger, N. J. G. M., … Van Gelder, I. C. (2005). Effect of rate and rhythm control on left ventricular function and cardiac dimensions in patients with persistent atrial fibrillation: Results from the RAte Control versus Electrical Cardioversion for Persistent Atrial Fibrillation (RACE) study. Heart Rhythm, 2(1), 19-24. doi:10.1016/j.hrthm.2004.09.028 es_ES
dc.description.references Heidenreich, E. A., Ferrero, J. M., Doblaré, M., & Rodríguez, J. F. (2010). Adaptive Macro Finite Elements for the Numerical Solution of Monodomain Equations in Cardiac Electrophysiology. Annals of Biomedical Engineering, 38(7), 2331-2345. doi:10.1007/s10439-010-9997-2 es_ES
dc.description.references Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: Visual molecular dynamics. Journal of Molecular Graphics, 14(1), 33-38. doi:10.1016/0263-7855(96)00018-5 es_ES
dc.description.references Iijima, H., Dunbar, J. B., & Marshall, G. R. (1987). Calibration of effective van der Waals atomic contact radii for proteins and peptides. Proteins: Structure, Function, and Genetics, 2(4), 330-339. doi:10.1002/prot.340020408 es_ES
dc.description.references Kalifa, J., Tanaka, K., Zaitsev, A. V., Warren, M., Vaidyanathan, R., Auerbach, D., … Berenfeld, O. (2006). Mechanisms of Wave Fractionation at Boundaries of High-Frequency Excitation in the Posterior Left Atrium of the Isolated Sheep Heart During Atrial Fibrillation. Circulation, 113(5), 626-633. doi:10.1161/circulationaha.105.575340 es_ES
dc.description.references Karunajeewa, H. A., Salman, S., Mueller, I., Baiwog, F., Gomorrai, S., Law, I., … Davis, T. M. E. (2010). Pharmacokinetics of Chloroquine and Monodesethylchloroquine in Pregnancy. Antimicrobial Agents and Chemotherapy, 54(3), 1186-1192. doi:10.1128/aac.01269-09 es_ES
dc.description.references Kneller, J., Zou, R., Vigmond, E. J., Wang, Z., Leon, L. J., & Nattel, S. (2002). Cholinergic Atrial Fibrillation in a Computer Model of a Two-Dimensional Sheet of Canine Atrial Cells With Realistic Ionic Properties. Circulation Research, 90(9). doi:10.1161/01.res.0000019783.88094.ba es_ES
dc.description.references Koura, T., Hara, M., Takeuchi, S., Ota, K., Okada, Y., Miyoshi, S., … Ogawa, S. (2002). Anisotropic Conduction Properties in Canine Atria Analyzed by High-Resolution Optical Mapping. Circulation, 105(17), 2092-2098. doi:10.1161/01.cir.0000015506.36371.0d es_ES
dc.description.references Kumar, S., Teh, A. W., Medi, C., Kistler, P. M., Morton, J. B., & Kalman, J. M. (2012). Atrial remodeling in varying clinical substrates within beating human hearts: Relevance to atrial fibrillation. Progress in Biophysics and Molecular Biology, 110(2-3), 278-294. doi:10.1016/j.pbiomolbio.2012.07.011 es_ES
dc.description.references Liao, J.-N., Chao, T.-F., Liu, C.-J., Wang, K.-L., Chen, S.-J., Tuan, T.-C., … Chen, S.-A. (2015). Risk and prediction of dementia in patients with atrial fibrillation — A nationwide population-based cohort study. International Journal of Cardiology, 199, 25-30. doi:10.1016/j.ijcard.2015.06.170 es_ES
dc.description.references Mähler, J., & Persson, I. (2011). A Study of the Hydration of the Alkali Metal Ions in Aqueous Solution. Inorganic Chemistry, 51(1), 425-438. doi:10.1021/ic2018693 es_ES
dc.description.references Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785-2791. doi:10.1002/jcc.21256 es_ES
dc.description.references Moslehi, J., DePinho, R. A., & Sahin, E. (2012). Telomeres and Mitochondria in the Aging Heart. Circulation Research, 110(9), 1226-1237. doi:10.1161/circresaha.111.246868 es_ES
dc.description.references Narayan, S. M., & Krummen, D. E. (2012). Targeting Stable Rotors to Treat Atrial Fibrillation. Arrhythmia & Electrophysiology Review, 1, 34. doi:10.15420/aer.2012.1.34 es_ES
dc.description.references Narayan, S. M., Krummen, D. E., Enyeart, M. W., & Rappel, W.-J. (2012). Computational Mapping Identifies Localized Mechanisms for Ablation of Atrial Fibrillation. PLoS ONE, 7(9), e46034. doi:10.1371/journal.pone.0046034 es_ES
dc.description.references NARAYAN, S. M., KRUMMEN, D. E., & RAPPEL, W.-J. (2012). Clinical Mapping Approach To Diagnose Electrical Rotors and Focal Impulse Sources for Human Atrial Fibrillation. Journal of Cardiovascular Electrophysiology, 23(5), 447-454. doi:10.1111/j.1540-8167.2012.02332.x es_ES
dc.description.references Narayan, S. M., Krummen, D. E., Shivkumar, K., Clopton, P., Rappel, W.-J., & Miller, J. M. (2012). Treatment of Atrial Fibrillation by the Ablation of Localized Sources. Journal of the American College of Cardiology, 60(7), 628-636. doi:10.1016/j.jacc.2012.05.022 es_ES
dc.description.references Narayan, S. M., Patel, J., Mulpuru, S., & Krummen, D. E. (2012). Focal impulse and rotor modulation ablation of sustaining rotors abruptly terminates persistent atrial fibrillation to sinus rhythm with elimination on follow-up: A video case study. Heart Rhythm, 9(9), 1436-1439. doi:10.1016/j.hrthm.2012.03.055 es_ES
dc.description.references Noujaim, S. F., Pandit, S. V., Berenfeld, O., Vikstrom, K., Cerrone, M., Mironov, S., … Jalife, J. (2006). Up-regulation of the inward rectifier K+current (IK1) in the mouse heart accelerates and stabilizes rotors. The Journal of Physiology, 578(1), 315-326. doi:10.1113/jphysiol.2006.121475 es_ES
dc.description.references Noujaim, S. F., Stuckey, J. A., Ponce‐Balbuena, D., Ferrer‐Villada, T., López‐Izquierdo, A., Pandit, S., … Jalife, J. (2010). Specific residues of the cytoplasmic domains of cardiac inward rectifier potassium channels are effective antifibrillatory targets. The FASEB Journal, 24(11), 4302-4312. doi:10.1096/fj.10-163246 es_ES
dc.description.references Noujaim, S. F., Stuckey, J. A., Ponce-Balbuena, D., Ferrer-Villada, T., Lopez-Izquierdo, A., Pandit, S. V., … Jalife, J. (2011). Structural bases for the different anti-fibrillatory effects of chloroquine and quinidine. Cardiovascular Research, 89(4), 862-869. doi:10.1093/cvr/cvr008 es_ES
dc.description.references Olshansky, B. (2004). Combining ablation of atrial fibrillation with ablation of atrial flutter: are we there yet?**Editorials published in the Journal of the American College of Cardiologyreflect the views of the authors and do not necessarily represent the views of JACCor the American College of Cardiology. Journal of the American College of Cardiology, 43(11), 2063-2065. doi:10.1016/j.jacc.2004.03.020 es_ES
dc.description.references Pegan, S., Arrabit, C., Zhou, W., Kwiatkowski, W., Collins, A., Slesinger, P. A., & Choe, S. (2005). Cytoplasmic domain structures of Kir2.1 and Kir3.1 show sites for modulating gating and rectification. Nature Neuroscience, 8(3), 279-287. doi:10.1038/nn1411 es_ES
dc.description.references Podd, S. J., Freemantle, N., Furniss, S. S., & Sulke, N. (2015). First clinical trial of specific IKAChblocker shows no reduction in atrial fibrillation burden in patients with paroxysmal atrial fibrillation: pacemaker assessment of BMS 914392 in patients with paroxysmal atrial fibrillation. Europace, 18(3), 340-346. doi:10.1093/europace/euv263 es_ES
dc.description.references Pond, A. L., Scheve, B. K., Benedict, A. T., Petrecca, K., Van Wagoner, D. R., Shrier, A., & Nerbonne, J. M. (2000). Expression of Distinct ERG Proteins in Rat, Mouse, and Human Heart. Journal of Biological Chemistry, 275(8), 5997-6006. doi:10.1074/jbc.275.8.5997 es_ES
dc.description.references Rienstra, M., Van Veldhuisen, D. J., Hagens, V. E., Ranchor, A. V., Veeger, N. J. G. M., Crijns, H. J. G. M., & Van Gelder, I. C. (2005). Gender-Related Differences in Rhythm Control Treatment in Persistent Atrial Fibrillation. Journal of the American College of Cardiology, 46(7), 1298-1306. doi:10.1016/j.jacc.2005.05.078 es_ES
dc.description.references Rietbrock, S., Heeley, E., Plumb, J., & van Staa, T. (2008). Chronic atrial fibrillation: Incidence, prevalence, and prediction of stroke using the Congestive heart failure, Hypertension, Age >75, Diabetes mellitus, and prior Stroke or transient ischemic attack (CHADS2) risk stratification scheme. American Heart Journal, 156(1), 57-64. doi:10.1016/j.ahj.2008.03.010 es_ES
dc.description.references Riou, B., Barriot, P., Rimailho, A., & Baud, F. J. (1988). Treatment of Severe Chloroquine Poisoning. New England Journal of Medicine, 318(1), 1-6. doi:10.1056/nejm198801073180101 es_ES
dc.description.references Rodriguez-Menchaca, A. A., Navarro-Polanco, R. A., Ferrer-Villada, T., Rupp, J., Sachse, F. B., Tristani-Firouzi, M., & Sanchez-Chapula, J. A. (2008). The molecular basis of chloroquine block of the inward rectifier Kir2.1 channel. Proceedings of the National Academy of Sciences, 105(4), 1364-1368. doi:10.1073/pnas.0708153105 es_ES
dc.description.references RYU, K., SAHADEVAN, J., KHRESTIAN, C. M., STAMBLER, B. S., & WALDO, A. L. (2006). Use of Fast Fourier Transform Analysis of Atrial Electrograms for Rapid Characterization of Atrial Activation-Implications for Delineating Possible Mechanisms of Atrial Tachyarrhythmias. Journal of Cardiovascular Electrophysiology, 17(2), 198-206. doi:10.1111/j.1540-8167.2005.00320.x es_ES
dc.description.references Sánchez-Chapula, J. A., Navarro-Polanco, R. A., Culberson, C., Chen, J., & Sanguinetti, M. C. (2002). Molecular Determinants of Voltage-dependent Human Ether-a-Go-Go Related Gene (HERG) K+Channel Block. Journal of Biological Chemistry, 277(26), 23587-23595. doi:10.1074/jbc.m200448200 es_ES
dc.description.references Madhavi Sastry, G., Adzhigirey, M., Day, T., Annabhimoju, R., & Sherman, W. (2013). Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments. Journal of Computer-Aided Molecular Design, 27(3), 221-234. doi:10.1007/s10822-013-9644-8 es_ES
dc.description.references Schotten, U. (2002). Atrial fibrillation-induced atrial contractile dysfunction: a tachycardiomyopathy of a different sort. Cardiovascular Research, 53(1), 192-201. doi:10.1016/s0008-6363(01)00453-9 es_ES
dc.description.references Shelley, J. C., Cholleti, A., Frye, L. L., Greenwood, J. R., Timlin, M. R., & Uchimaya, M. (2007). Epik: a software program for pK a prediction and protonation state generation for drug-like molecules. Journal of Computer-Aided Molecular Design, 21(12), 681-691. doi:10.1007/s10822-007-9133-z es_ES
dc.description.references Shivakumar, D., Williams, J., Wu, Y., Damm, W., Shelley, J., & Sherman, W. (2010). Prediction of Absolute Solvation Free Energies using Molecular Dynamics Free Energy Perturbation and the OPLS Force Field. Journal of Chemical Theory and Computation, 6(5), 1509-1519. doi:10.1021/ct900587b es_ES
dc.description.references Curtis, A., & Shukla. (2013). Avoiding permanent atrial fibrillation: treatment approaches to prevent disease progression. Vascular Health and Risk Management, 1. doi:10.2147/vhrm.s49334 es_ES
dc.description.references Singh-Manoux, A., Fayosse, A., Sabia, S., Canonico, M., Bobak, M., Elbaz, A., … Dugravot, A. (2017). Atrial fibrillation as a risk factor for cognitive decline and dementia. European Heart Journal, 38(34), 2612-2618. doi:10.1093/eurheartj/ehx208 es_ES
dc.description.references Skibsbye, L., Jespersen, T., Christ, T., Maleckar, M. M., van den Brink, J., Tavi, P., & Koivumäki, J. T. (2016). Refractoriness in human atria: Time and voltage dependence of sodium channel availability. Journal of Molecular and Cellular Cardiology, 101, 26-34. doi:10.1016/j.yjmcc.2016.10.009 es_ES
dc.description.references Stas, P., Faes, D., & Noyens, P. (2008). Conduction disorder and QT prolongation secondary to long-term treatment with chloroquine. International Journal of Cardiology, 127(2), e80-e82. doi:10.1016/j.ijcard.2007.04.055 es_ES
dc.description.references Takemoto, Y., Slough, D. P., Meinke, G., Katnik, C., Graziano, Z. A., Chidipi, B., … Noujaim, S. F. (2018). Structural basis for the antiarrhythmic blockade of a potassium channel with a small molecule. The FASEB Journal, 32(4), 1778-1793. doi:10.1096/fj.201700349r es_ES
dc.description.references Alkmim Teixeira, R., Borba, E. F., Pedrosa, A., Nishioka, S., Viana, V. S. T., Ramires, J. A., … Martinelli Filho, M. (2013). Evidence for cardiac safety and antiarrhythmic potential of chloroquine in systemic lupus erythematosus. Europace, 16(6), 887-892. doi:10.1093/europace/eut290 es_ES
dc.description.references Tobón, C., Ruiz-Villa, C. A., Heidenreich, E., Romero, L., Hornero, F., & Saiz, J. (2013). A Three-Dimensional Human Atrial Model with Fiber Orientation. Electrograms and Arrhythmic Activation Patterns Relationship. PLoS ONE, 8(2), e50883. doi:10.1371/journal.pone.0050883 es_ES
dc.description.references Traebert, M., Dumotier, B., Meister, L., Hoffmann, P., Dominguez-Estevez, M., & Suter, W. (2004). Inhibition of hERG K+ currents by antimalarial drugs in stably transfected HEK293 cells. European Journal of Pharmacology, 484(1), 41-48. doi:10.1016/j.ejphar.2003.11.003 es_ES
dc.description.references WAGONER, D. R. V. (2003). Electrophysiological Remodeling in Human Atrial Fibrillation. Pacing and Clinical Electrophysiology, 26(7p2), 1572-1575. doi:10.1046/j.1460-9592.2003.t01-1-00234.x es_ES
dc.description.references Vest, J. A., Wehrens, X. H. T., Reiken, S. R., Lehnart, S. E., Dobrev, D., Chandra, P., … Marks, A. R. (2005). Defective Cardiac Ryanodine Receptor Regulation During Atrial Fibrillation. Circulation, 111(16), 2025-2032. doi:10.1161/01.cir.0000162461.67140.4c es_ES
dc.description.references VOIGT, N., FRIEDRICH, A., BOCK, M., WETTWER, E., CHRIST, T., KNAUT, M., … DOBREV, D. (2007). Differential phosphorylation-dependent regulation of constitutively active and muscarinic receptor-activated IK,ACh channels in patients with chronic atrial fibrillation. Cardiovascular Research, 74(3), 426-437. doi:10.1016/j.cardiores.2007.02.009 es_ES
dc.description.references Voigt, N., Trausch, A., Knaut, M., Matschke, K., Varró, A., Van Wagoner, D. R., … Dobrev, D. (2010). Left-to-Right Atrial Inward Rectifier Potassium Current Gradients in Patients With Paroxysmal Versus Chronic Atrial Fibrillation. Circulation: Arrhythmia and Electrophysiology, 3(5), 472-480. doi:10.1161/circep.110.954636 es_ES
dc.description.references VOLKOVA, M., GARG, R., DICK, S., & BOHELER, K. (2005). Aging-associated changes in cardiac gene expression. Cardiovascular Research, 66(2), 194-204. doi:10.1016/j.cardiores.2004.11.016 es_ES
dc.description.references Walfridsson, H., Anfinsen, O.-G., Berggren, A., Frison, L., Jensen, S., Linhardt, G., … Carlsson, L. (2014). Is the acetylcholine-regulated inwardly rectifying potassium current a viable antiarrhythmic target? Translational discrepancies of AZD2927 and A7071 in dogs and humans. EP Europace, 17(3), 473-482. doi:10.1093/europace/euu192 es_ES
dc.description.references White, N. J. (2007). Cardiotoxicity of antimalarial drugs. The Lancet Infectious Diseases, 7(8), 549-558. doi:10.1016/s1473-3099(07)70187-1 es_ES
dc.description.references Wishart, D. S., Knox, C., Guo, A. C., Cheng, D., Shrivastava, S., Tzur, D., … Hassanali, M. (2007). DrugBank: a knowledgebase for drugs, drug actions and drug targets. Nucleic Acids Research, 36(suppl_1), D901-D906. doi:10.1093/nar/gkm958 es_ES
dc.description.references Wolf, P. A., Abbott, R. D., & Kannel, W. B. (1991). Atrial fibrillation as an independent risk factor for stroke: the Framingham Study. Stroke, 22(8), 983-988. doi:10.1161/01.str.22.8.983 es_ES
dc.description.references Workman, A. (2001). The contribution of ionic currents to changes in refractoriness of human atrial myocytes associated with chronic atrial fibrillation. Cardiovascular Research, 52(2), 226-235. doi:10.1016/s0008-6363(01)00380-7 es_ES
dc.description.references Wozniacka, A., Cygankiewicz, I., Chudzik, M., Sysa-Jędrzejowska, A., & Wranicz, J. (2006). The Cardiac Safety of Chloroquine Phosphate Treatment in Patients with Systemic Lupus Erythematosus: The Influence on Arrhythmia, Heart Rate Variability and Repolarization Parameters. Lupus, 15(8), 521-525. doi:10.1191/0961203306lu2345oa es_ES
dc.description.references Zimetbaum, P. (2012). Antiarrhythmic Drug Therapy for Atrial Fibrillation. Circulation, 125(2), 381-389. doi:10.1161/circulationaha.111.019927 es_ES
dc.description.references Zlochiver, S., Yamazaki, M., Kalifa, J., & Berenfeld, O. (2008). Rotor meandering contributes to irregularity in electrograms during atrial fibrillation. Heart Rhythm, 5(6), 846-854. doi:10.1016/j.hrthm.2008.03.010 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem