- -

The Antimalarial Chloroquine Reduces the Burden of Persistent Atrial Fibrillation

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

The Antimalarial Chloroquine Reduces the Burden of Persistent Atrial Fibrillation

Mostrar el registro completo del ítem

Tobón, C.; Palacio, LC.; Chidipi, B.; Slough, DP.; Tran, T.; Tran, N.; Reiser, M.... (2019). The Antimalarial Chloroquine Reduces the Burden of Persistent Atrial Fibrillation. Frontiers in Pharmacology. 10:1-12. https://doi.org/10.3389/fphar.2019.01392

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/156861

Ficheros en el ítem

Metadatos del ítem

Título: The Antimalarial Chloroquine Reduces the Burden of Persistent Atrial Fibrillation
Autor: Tobón, Catalina Palacio, Laura C. Chidipi, Bojjibadu Slough, Diana P. Tran, Thanh Tran, Nhi Reiser, Michelle Lin, Yu-Shan Herweg, Bengt Sayad, Dany Saiz Rodríguez, Francisco Javier Noujaim, Sami
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica
Fecha difusión:
Resumen:
[EN] In clinical practice, reducing the burden of persistent atrial fibrillation by pharmacological means is challenging. We explored if blocking the background and the acetylcholine-activated inward rectifier potassium ...[+]
Palabras clave: Chloroquine , Persistent atrial fibrillation , Potassium inward rectifiers , I-KACh , I-K1
Derechos de uso: Reconocimiento (by)
Fuente:
Frontiers in Pharmacology. (eissn: 1663-9812 )
DOI: 10.3389/fphar.2019.01392
Editorial:
Frontiers Media SA
Versión del editor: https://doi.org/10.3389/fphar.2019.01392
Código del Proyecto:
info:eu-repo/grantAgreement/NIH//R01HL129136/
info:eu-repo/grantAgreement/NIH//R21HL138064/
info:eu-repo/grantAgreement/GVA//PROMETEO%2F2016%2F088/ES/MODELOS COMPUTACIONALES PERSONALIZADOS MULTI-ESCALA PARA LA OPTIMIZACION DEL DIAGNOSTICO Y TRATAMIENTO DE ARRITMIAS CARDIACAS (PERSONALISED DIGITAL HEART)/
Agradecimientos:
This work was supported in part by National Institutes of Health grants R21HL138064, R01HL129136, by the Direccion General de Politica Cientifica de la Generalitat Valenciana (PROMETEO 2016/088), and by the ACM SIGHPC/Intel ...[+]
Tipo: Artículo

References

Al-Bari, M. A. A. (2015). Chloroquine analogues in drug discovery: new directions of uses, mechanisms of actions and toxic manifestations from malaria to multifarious diseases. Journal of Antimicrobial Chemotherapy, 70(6), 1608-1621. doi:10.1093/jac/dkv018

Atienza, F., & Jalife, J. (2007). Reentry and atrial fibrillation. Heart Rhythm, 4(3), S13-S16. doi:10.1016/j.hrthm.2006.12.004

Bai, J., Gladding, P. A., Stiles, M. K., Fedorov, V. V., & Zhao, J. (2018). Ionic and cellular mechanisms underlying TBX5/PITX2 insufficiency-induced atrial fibrillation: Insights from mathematical models of human atrial cells. Scientific Reports, 8(1). doi:10.1038/s41598-018-33958-y [+]
Al-Bari, M. A. A. (2015). Chloroquine analogues in drug discovery: new directions of uses, mechanisms of actions and toxic manifestations from malaria to multifarious diseases. Journal of Antimicrobial Chemotherapy, 70(6), 1608-1621. doi:10.1093/jac/dkv018

Atienza, F., & Jalife, J. (2007). Reentry and atrial fibrillation. Heart Rhythm, 4(3), S13-S16. doi:10.1016/j.hrthm.2006.12.004

Bai, J., Gladding, P. A., Stiles, M. K., Fedorov, V. V., & Zhao, J. (2018). Ionic and cellular mechanisms underlying TBX5/PITX2 insufficiency-induced atrial fibrillation: Insights from mathematical models of human atrial cells. Scientific Reports, 8(1). doi:10.1038/s41598-018-33958-y

Burrell, Z. L., & Martinez, A. C. (1958). Chloroquine and Hydroxychloroquine in the Treatment of Cardiac Arrhythmias. New England Journal of Medicine, 258(16), 798-800. doi:10.1056/nejm195804172581608

Chung, M. K., Shemanski, L., Sherman, D. G., Greene, H. L., Hogan, D. B., Kellen, J. C., … Wyse, D. G. (2005). Functional Status in Rate- Versus Rhythm-Control Strategies for Atrial Fibrillation. Journal of the American College of Cardiology, 46(10), 1891-1899. doi:10.1016/j.jacc.2005.07.040

Colman, M. A., Pinali, C., Trafford, A. W., Zhang, H., & Kitmitto, A. (2017). A computational model of spatio-temporal cardiac intracellular calcium handling with realistic structure and spatial flux distribution from sarcoplasmic reticulum and t-tubule reconstructions. PLOS Computational Biology, 13(8), e1005714. doi:10.1371/journal.pcbi.1005714

Courtemanche, M., Ramirez, R. J., & Nattel, S. (1998). Ionic mechanisms underlying human atrial action potential properties: insights from a mathematical model. American Journal of Physiology-Heart and Circulatory Physiology, 275(1), H301-H321. doi:10.1152/ajpheart.1998.275.1.h301

DE GROOT, N. M. S., & SCHALIJ, M. J. (2006). Fragmented, Long-Duration, Low-Amplitude Electrograms Characterize the Origin of Focal Atrial Tachycardia. Journal of Cardiovascular Electrophysiology, 17(10), 1086-1092. doi:10.1111/j.1540-8167.2006.00568.x

Dobrev, D., & Nattel, S. (2011). New insights into the molecular basis of atrial fibrillation: mechanistic and therapeutic implications. Cardiovascular Research, 89(4), 689-691. doi:10.1093/cvr/cvr021

Filgueiras-Rama, D., Martins, R. P., Mironov, S., Yamazaki, M., Calvo, C. J., Ennis, S. R., … Jalife, J. (2012). Chloroquine Terminates Stretch-Induced Atrial Fibrillation More Effectively Than Flecainide in the Sheep Heart. Circulation: Arrhythmia and Electrophysiology, 5(3), 561-570. doi:10.1161/circep.111.966820

Grandi, E., Pandit, S. V., Voigt, N., Workman, A. J., Dobrev, D., Jalife, J., & Bers, D. M. (2011). Human Atrial Action Potential and Ca2+Model. Circulation Research, 109(9), 1055-1066. doi:10.1161/circresaha.111.253955

Greenwood, J. R., Calkins, D., Sullivan, A. P., & Shelley, J. C. (2010). Towards the comprehensive, rapid, and accurate prediction of the favorable tautomeric states of drug-like molecules in aqueous solution. Journal of Computer-Aided Molecular Design, 24(6-7), 591-604. doi:10.1007/s10822-010-9349-1

Hagens, V. E., Van Veldhuisen, D. J., Kamp, O., Rienstra, M., Bosker, H. A., Veeger, N. J. G. M., … Van Gelder, I. C. (2005). Effect of rate and rhythm control on left ventricular function and cardiac dimensions in patients with persistent atrial fibrillation: Results from the RAte Control versus Electrical Cardioversion for Persistent Atrial Fibrillation (RACE) study. Heart Rhythm, 2(1), 19-24. doi:10.1016/j.hrthm.2004.09.028

Heidenreich, E. A., Ferrero, J. M., Doblaré, M., & Rodríguez, J. F. (2010). Adaptive Macro Finite Elements for the Numerical Solution of Monodomain Equations in Cardiac Electrophysiology. Annals of Biomedical Engineering, 38(7), 2331-2345. doi:10.1007/s10439-010-9997-2

Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: Visual molecular dynamics. Journal of Molecular Graphics, 14(1), 33-38. doi:10.1016/0263-7855(96)00018-5

Iijima, H., Dunbar, J. B., & Marshall, G. R. (1987). Calibration of effective van der Waals atomic contact radii for proteins and peptides. Proteins: Structure, Function, and Genetics, 2(4), 330-339. doi:10.1002/prot.340020408

Kalifa, J., Tanaka, K., Zaitsev, A. V., Warren, M., Vaidyanathan, R., Auerbach, D., … Berenfeld, O. (2006). Mechanisms of Wave Fractionation at Boundaries of High-Frequency Excitation in the Posterior Left Atrium of the Isolated Sheep Heart During Atrial Fibrillation. Circulation, 113(5), 626-633. doi:10.1161/circulationaha.105.575340

Karunajeewa, H. A., Salman, S., Mueller, I., Baiwog, F., Gomorrai, S., Law, I., … Davis, T. M. E. (2010). Pharmacokinetics of Chloroquine and Monodesethylchloroquine in Pregnancy. Antimicrobial Agents and Chemotherapy, 54(3), 1186-1192. doi:10.1128/aac.01269-09

Kneller, J., Zou, R., Vigmond, E. J., Wang, Z., Leon, L. J., & Nattel, S. (2002). Cholinergic Atrial Fibrillation in a Computer Model of a Two-Dimensional Sheet of Canine Atrial Cells With Realistic Ionic Properties. Circulation Research, 90(9). doi:10.1161/01.res.0000019783.88094.ba

Koura, T., Hara, M., Takeuchi, S., Ota, K., Okada, Y., Miyoshi, S., … Ogawa, S. (2002). Anisotropic Conduction Properties in Canine Atria Analyzed by High-Resolution Optical Mapping. Circulation, 105(17), 2092-2098. doi:10.1161/01.cir.0000015506.36371.0d

Kumar, S., Teh, A. W., Medi, C., Kistler, P. M., Morton, J. B., & Kalman, J. M. (2012). Atrial remodeling in varying clinical substrates within beating human hearts: Relevance to atrial fibrillation. Progress in Biophysics and Molecular Biology, 110(2-3), 278-294. doi:10.1016/j.pbiomolbio.2012.07.011

Liao, J.-N., Chao, T.-F., Liu, C.-J., Wang, K.-L., Chen, S.-J., Tuan, T.-C., … Chen, S.-A. (2015). Risk and prediction of dementia in patients with atrial fibrillation — A nationwide population-based cohort study. International Journal of Cardiology, 199, 25-30. doi:10.1016/j.ijcard.2015.06.170

Mähler, J., & Persson, I. (2011). A Study of the Hydration of the Alkali Metal Ions in Aqueous Solution. Inorganic Chemistry, 51(1), 425-438. doi:10.1021/ic2018693

Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785-2791. doi:10.1002/jcc.21256

Moslehi, J., DePinho, R. A., & Sahin, E. (2012). Telomeres and Mitochondria in the Aging Heart. Circulation Research, 110(9), 1226-1237. doi:10.1161/circresaha.111.246868

Narayan, S. M., & Krummen, D. E. (2012). Targeting Stable Rotors to Treat Atrial Fibrillation. Arrhythmia & Electrophysiology Review, 1, 34. doi:10.15420/aer.2012.1.34

Narayan, S. M., Krummen, D. E., Enyeart, M. W., & Rappel, W.-J. (2012). Computational Mapping Identifies Localized Mechanisms for Ablation of Atrial Fibrillation. PLoS ONE, 7(9), e46034. doi:10.1371/journal.pone.0046034

NARAYAN, S. M., KRUMMEN, D. E., & RAPPEL, W.-J. (2012). Clinical Mapping Approach To Diagnose Electrical Rotors and Focal Impulse Sources for Human Atrial Fibrillation. Journal of Cardiovascular Electrophysiology, 23(5), 447-454. doi:10.1111/j.1540-8167.2012.02332.x

Narayan, S. M., Krummen, D. E., Shivkumar, K., Clopton, P., Rappel, W.-J., & Miller, J. M. (2012). Treatment of Atrial Fibrillation by the Ablation of Localized Sources. Journal of the American College of Cardiology, 60(7), 628-636. doi:10.1016/j.jacc.2012.05.022

Narayan, S. M., Patel, J., Mulpuru, S., & Krummen, D. E. (2012). Focal impulse and rotor modulation ablation of sustaining rotors abruptly terminates persistent atrial fibrillation to sinus rhythm with elimination on follow-up: A video case study. Heart Rhythm, 9(9), 1436-1439. doi:10.1016/j.hrthm.2012.03.055

Noujaim, S. F., Pandit, S. V., Berenfeld, O., Vikstrom, K., Cerrone, M., Mironov, S., … Jalife, J. (2006). Up-regulation of the inward rectifier K+current (IK1) in the mouse heart accelerates and stabilizes rotors. The Journal of Physiology, 578(1), 315-326. doi:10.1113/jphysiol.2006.121475

Noujaim, S. F., Stuckey, J. A., Ponce‐Balbuena, D., Ferrer‐Villada, T., López‐Izquierdo, A., Pandit, S., … Jalife, J. (2010). Specific residues of the cytoplasmic domains of cardiac inward rectifier potassium channels are effective antifibrillatory targets. The FASEB Journal, 24(11), 4302-4312. doi:10.1096/fj.10-163246

Noujaim, S. F., Stuckey, J. A., Ponce-Balbuena, D., Ferrer-Villada, T., Lopez-Izquierdo, A., Pandit, S. V., … Jalife, J. (2011). Structural bases for the different anti-fibrillatory effects of chloroquine and quinidine. Cardiovascular Research, 89(4), 862-869. doi:10.1093/cvr/cvr008

Olshansky, B. (2004). Combining ablation of atrial fibrillation with ablation of atrial flutter: are we there yet?**Editorials published in the Journal of the American College of Cardiologyreflect the views of the authors and do not necessarily represent the views of JACCor the American College of Cardiology. Journal of the American College of Cardiology, 43(11), 2063-2065. doi:10.1016/j.jacc.2004.03.020

Pegan, S., Arrabit, C., Zhou, W., Kwiatkowski, W., Collins, A., Slesinger, P. A., & Choe, S. (2005). Cytoplasmic domain structures of Kir2.1 and Kir3.1 show sites for modulating gating and rectification. Nature Neuroscience, 8(3), 279-287. doi:10.1038/nn1411

Podd, S. J., Freemantle, N., Furniss, S. S., & Sulke, N. (2015). First clinical trial of specific IKAChblocker shows no reduction in atrial fibrillation burden in patients with paroxysmal atrial fibrillation: pacemaker assessment of BMS 914392 in patients with paroxysmal atrial fibrillation. Europace, 18(3), 340-346. doi:10.1093/europace/euv263

Pond, A. L., Scheve, B. K., Benedict, A. T., Petrecca, K., Van Wagoner, D. R., Shrier, A., & Nerbonne, J. M. (2000). Expression of Distinct ERG Proteins in Rat, Mouse, and Human Heart. Journal of Biological Chemistry, 275(8), 5997-6006. doi:10.1074/jbc.275.8.5997

Rienstra, M., Van Veldhuisen, D. J., Hagens, V. E., Ranchor, A. V., Veeger, N. J. G. M., Crijns, H. J. G. M., & Van Gelder, I. C. (2005). Gender-Related Differences in Rhythm Control Treatment in Persistent Atrial Fibrillation. Journal of the American College of Cardiology, 46(7), 1298-1306. doi:10.1016/j.jacc.2005.05.078

Rietbrock, S., Heeley, E., Plumb, J., & van Staa, T. (2008). Chronic atrial fibrillation: Incidence, prevalence, and prediction of stroke using the Congestive heart failure, Hypertension, Age >75, Diabetes mellitus, and prior Stroke or transient ischemic attack (CHADS2) risk stratification scheme. American Heart Journal, 156(1), 57-64. doi:10.1016/j.ahj.2008.03.010

Riou, B., Barriot, P., Rimailho, A., & Baud, F. J. (1988). Treatment of Severe Chloroquine Poisoning. New England Journal of Medicine, 318(1), 1-6. doi:10.1056/nejm198801073180101

Rodriguez-Menchaca, A. A., Navarro-Polanco, R. A., Ferrer-Villada, T., Rupp, J., Sachse, F. B., Tristani-Firouzi, M., & Sanchez-Chapula, J. A. (2008). The molecular basis of chloroquine block of the inward rectifier Kir2.1 channel. Proceedings of the National Academy of Sciences, 105(4), 1364-1368. doi:10.1073/pnas.0708153105

RYU, K., SAHADEVAN, J., KHRESTIAN, C. M., STAMBLER, B. S., & WALDO, A. L. (2006). Use of Fast Fourier Transform Analysis of Atrial Electrograms for Rapid Characterization of Atrial Activation-Implications for Delineating Possible Mechanisms of Atrial Tachyarrhythmias. Journal of Cardiovascular Electrophysiology, 17(2), 198-206. doi:10.1111/j.1540-8167.2005.00320.x

Sánchez-Chapula, J. A., Navarro-Polanco, R. A., Culberson, C., Chen, J., & Sanguinetti, M. C. (2002). Molecular Determinants of Voltage-dependent Human Ether-a-Go-Go Related Gene (HERG) K+Channel Block. Journal of Biological Chemistry, 277(26), 23587-23595. doi:10.1074/jbc.m200448200

Madhavi Sastry, G., Adzhigirey, M., Day, T., Annabhimoju, R., & Sherman, W. (2013). Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments. Journal of Computer-Aided Molecular Design, 27(3), 221-234. doi:10.1007/s10822-013-9644-8

Schotten, U. (2002). Atrial fibrillation-induced atrial contractile dysfunction: a tachycardiomyopathy of a different sort. Cardiovascular Research, 53(1), 192-201. doi:10.1016/s0008-6363(01)00453-9

Shelley, J. C., Cholleti, A., Frye, L. L., Greenwood, J. R., Timlin, M. R., & Uchimaya, M. (2007). Epik: a software program for pK a prediction and protonation state generation for drug-like molecules. Journal of Computer-Aided Molecular Design, 21(12), 681-691. doi:10.1007/s10822-007-9133-z

Shivakumar, D., Williams, J., Wu, Y., Damm, W., Shelley, J., & Sherman, W. (2010). Prediction of Absolute Solvation Free Energies using Molecular Dynamics Free Energy Perturbation and the OPLS Force Field. Journal of Chemical Theory and Computation, 6(5), 1509-1519. doi:10.1021/ct900587b

Curtis, A., & Shukla. (2013). Avoiding permanent atrial fibrillation: treatment approaches to prevent disease progression. Vascular Health and Risk Management, 1. doi:10.2147/vhrm.s49334

Singh-Manoux, A., Fayosse, A., Sabia, S., Canonico, M., Bobak, M., Elbaz, A., … Dugravot, A. (2017). Atrial fibrillation as a risk factor for cognitive decline and dementia. European Heart Journal, 38(34), 2612-2618. doi:10.1093/eurheartj/ehx208

Skibsbye, L., Jespersen, T., Christ, T., Maleckar, M. M., van den Brink, J., Tavi, P., & Koivumäki, J. T. (2016). Refractoriness in human atria: Time and voltage dependence of sodium channel availability. Journal of Molecular and Cellular Cardiology, 101, 26-34. doi:10.1016/j.yjmcc.2016.10.009

Stas, P., Faes, D., & Noyens, P. (2008). Conduction disorder and QT prolongation secondary to long-term treatment with chloroquine. International Journal of Cardiology, 127(2), e80-e82. doi:10.1016/j.ijcard.2007.04.055

Takemoto, Y., Slough, D. P., Meinke, G., Katnik, C., Graziano, Z. A., Chidipi, B., … Noujaim, S. F. (2018). Structural basis for the antiarrhythmic blockade of a potassium channel with a small molecule. The FASEB Journal, 32(4), 1778-1793. doi:10.1096/fj.201700349r

Alkmim Teixeira, R., Borba, E. F., Pedrosa, A., Nishioka, S., Viana, V. S. T., Ramires, J. A., … Martinelli Filho, M. (2013). Evidence for cardiac safety and antiarrhythmic potential of chloroquine in systemic lupus erythematosus. Europace, 16(6), 887-892. doi:10.1093/europace/eut290

Tobón, C., Ruiz-Villa, C. A., Heidenreich, E., Romero, L., Hornero, F., & Saiz, J. (2013). A Three-Dimensional Human Atrial Model with Fiber Orientation. Electrograms and Arrhythmic Activation Patterns Relationship. PLoS ONE, 8(2), e50883. doi:10.1371/journal.pone.0050883

Traebert, M., Dumotier, B., Meister, L., Hoffmann, P., Dominguez-Estevez, M., & Suter, W. (2004). Inhibition of hERG K+ currents by antimalarial drugs in stably transfected HEK293 cells. European Journal of Pharmacology, 484(1), 41-48. doi:10.1016/j.ejphar.2003.11.003

WAGONER, D. R. V. (2003). Electrophysiological Remodeling in Human Atrial Fibrillation. Pacing and Clinical Electrophysiology, 26(7p2), 1572-1575. doi:10.1046/j.1460-9592.2003.t01-1-00234.x

Vest, J. A., Wehrens, X. H. T., Reiken, S. R., Lehnart, S. E., Dobrev, D., Chandra, P., … Marks, A. R. (2005). Defective Cardiac Ryanodine Receptor Regulation During Atrial Fibrillation. Circulation, 111(16), 2025-2032. doi:10.1161/01.cir.0000162461.67140.4c

VOIGT, N., FRIEDRICH, A., BOCK, M., WETTWER, E., CHRIST, T., KNAUT, M., … DOBREV, D. (2007). Differential phosphorylation-dependent regulation of constitutively active and muscarinic receptor-activated IK,ACh channels in patients with chronic atrial fibrillation. Cardiovascular Research, 74(3), 426-437. doi:10.1016/j.cardiores.2007.02.009

Voigt, N., Trausch, A., Knaut, M., Matschke, K., Varró, A., Van Wagoner, D. R., … Dobrev, D. (2010). Left-to-Right Atrial Inward Rectifier Potassium Current Gradients in Patients With Paroxysmal Versus Chronic Atrial Fibrillation. Circulation: Arrhythmia and Electrophysiology, 3(5), 472-480. doi:10.1161/circep.110.954636

VOLKOVA, M., GARG, R., DICK, S., & BOHELER, K. (2005). Aging-associated changes in cardiac gene expression. Cardiovascular Research, 66(2), 194-204. doi:10.1016/j.cardiores.2004.11.016

Walfridsson, H., Anfinsen, O.-G., Berggren, A., Frison, L., Jensen, S., Linhardt, G., … Carlsson, L. (2014). Is the acetylcholine-regulated inwardly rectifying potassium current a viable antiarrhythmic target? Translational discrepancies of AZD2927 and A7071 in dogs and humans. EP Europace, 17(3), 473-482. doi:10.1093/europace/euu192

White, N. J. (2007). Cardiotoxicity of antimalarial drugs. The Lancet Infectious Diseases, 7(8), 549-558. doi:10.1016/s1473-3099(07)70187-1

Wishart, D. S., Knox, C., Guo, A. C., Cheng, D., Shrivastava, S., Tzur, D., … Hassanali, M. (2007). DrugBank: a knowledgebase for drugs, drug actions and drug targets. Nucleic Acids Research, 36(suppl_1), D901-D906. doi:10.1093/nar/gkm958

Wolf, P. A., Abbott, R. D., & Kannel, W. B. (1991). Atrial fibrillation as an independent risk factor for stroke: the Framingham Study. Stroke, 22(8), 983-988. doi:10.1161/01.str.22.8.983

Workman, A. (2001). The contribution of ionic currents to changes in refractoriness of human atrial myocytes associated with chronic atrial fibrillation. Cardiovascular Research, 52(2), 226-235. doi:10.1016/s0008-6363(01)00380-7

Wozniacka, A., Cygankiewicz, I., Chudzik, M., Sysa-Jędrzejowska, A., & Wranicz, J. (2006). The Cardiac Safety of Chloroquine Phosphate Treatment in Patients with Systemic Lupus Erythematosus: The Influence on Arrhythmia, Heart Rate Variability and Repolarization Parameters. Lupus, 15(8), 521-525. doi:10.1191/0961203306lu2345oa

Zimetbaum, P. (2012). Antiarrhythmic Drug Therapy for Atrial Fibrillation. Circulation, 125(2), 381-389. doi:10.1161/circulationaha.111.019927

Zlochiver, S., Yamazaki, M., Kalifa, J., & Berenfeld, O. (2008). Rotor meandering contributes to irregularity in electrograms during atrial fibrillation. Heart Rhythm, 5(6), 846-854. doi:10.1016/j.hrthm.2008.03.010

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem