- -

Diffusion Through a Network of Compartments Separated by Partially-Transmitting Boundaries

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Diffusion Through a Network of Compartments Separated by Partially-Transmitting Boundaries

Mostrar el registro completo del ítem

Muñoz-Gil, G.; Garcia March, MA.; Manzo, C.; Celi, A.; Lewenstein, M. (2019). Diffusion Through a Network of Compartments Separated by Partially-Transmitting Boundaries. Frontiers in Physics. 7:1-6. https://doi.org/10.3389/fphy.2019.00031

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/156946

Ficheros en el ítem

Metadatos del ítem

Título: Diffusion Through a Network of Compartments Separated by Partially-Transmitting Boundaries
Autor: Muñoz-Gil, Gorka Garcia March, Miguel Angel Manzo, Carlo Celi, Alessio Lewenstein, Maciej
Entidad UPV: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Fecha difusión:
Resumen:
[EN] We study the random walk of a particle in a compartmentalized environment, as realized in biological samples or solid state compounds. Each compartment is characterized by its length L and the boundaries transmittance ...[+]
Palabras clave: Random walk , Anomalous diffusion , Stochastic processes , Complex systems , Barriers
Derechos de uso: Reconocimiento (by)
Fuente:
Frontiers in Physics. (eissn: 2296-424X )
DOI: 10.3389/fphy.2019.00031
Editorial:
Frontiers Media
Versión del editor: https://doi.org/10.3389/fphy.2019.00031
Código del Proyecto:
info:eu-repo/grantAgreement/EC/FP7/319278/EU/Ultracold Quantum Matter/
...[+]
info:eu-repo/grantAgreement/EC/FP7/319278/EU/Ultracold Quantum Matter/
info:eu-repo/grantAgreement/MINECO//FIS2016-79508-P/ES/FRONTERAS DE LA FISICA TEORICA ATOMICA, MOLECULAR, Y OPTICA/
info:eu-repo/grantAgreement/EC/FP7/339106/EU/Open SYstems RevISited: From Brownian motion to quantum simulators/
info:eu-repo/grantAgreement/Generalitat de Catalunya/Grups de Recerca Reconeguts i Finançats per la Generalitat de Catalunya 2017-2019/2017 SGR 1341/
info:eu-repo/grantAgreement/EC/H2020/641122/EU/Quantum simulations of insulators and conductors/
info:eu-repo/grantAgreement/MINECO//SEV-2015-0522/ES/AGR-INSTITUTO DE CIENCIAS FOTONICAS/
info:eu-repo/grantAgreement/NCN//2016%2F20%2FW%2FST4%2F00314/
info:eu-repo/grantAgreement/Generalitat de Catalunya//2017 SGR 940/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/BFU2017-85693-R/ES/ESTUDIO DEL PAPEL DE LAS INTEGRINAS EN LOS MECANISMOS MOLECULARES DE LA CURACION DE LAS HERIDAS A LA ESCALA NANOMETRICA/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/FIS2017-86530-P/ES/DISPOSITIVOS DE ONDAS DE MATERIA Y FOTONICOS PARA LAS TECNOLOGIAS CUANTICAS/
info:eu-repo/grantAgreement/FWF//F4016-N23/
[-]
Agradecimientos:
This work has been funded by the Spanish Ministry MINECO (National Plan15 Grant: FISICATEAMO No. FIS2016-79508-P, SEVERO OCHOA No. SEV-2015-0522, FPI), European Social Fund, Fundacio Cellex, Generalitat de Catalunya (AGAUR ...[+]
Tipo: Artículo

References

Tan, P., Liang, Y., Xu, Q., Mamontov, E., Li, J., Xing, X., & Hong, L. (2018). Gradual Crossover from Subdiffusion to Normal Diffusion: A Many-Body Effect in Protein Surface Water. Physical Review Letters, 120(24). doi:10.1103/physrevlett.120.248101

Berkowitz, B., Cortis, A., Dentz, M., & Scher, H. (2006). Modeling non-Fickian transport in geological formations as a continuous time random walk. Reviews of Geophysics, 44(2). doi:10.1029/2005rg000178

Metzler, R., Jeon, J.-H., Cherstvy, A. G., & Barkai, E. (2014). Anomalous diffusion models and their properties: non-stationarity, non-ergodicity, and ageing at the centenary of single particle tracking. Phys. Chem. Chem. Phys., 16(44), 24128-24164. doi:10.1039/c4cp03465a [+]
Tan, P., Liang, Y., Xu, Q., Mamontov, E., Li, J., Xing, X., & Hong, L. (2018). Gradual Crossover from Subdiffusion to Normal Diffusion: A Many-Body Effect in Protein Surface Water. Physical Review Letters, 120(24). doi:10.1103/physrevlett.120.248101

Berkowitz, B., Cortis, A., Dentz, M., & Scher, H. (2006). Modeling non-Fickian transport in geological formations as a continuous time random walk. Reviews of Geophysics, 44(2). doi:10.1029/2005rg000178

Metzler, R., Jeon, J.-H., Cherstvy, A. G., & Barkai, E. (2014). Anomalous diffusion models and their properties: non-stationarity, non-ergodicity, and ageing at the centenary of single particle tracking. Phys. Chem. Chem. Phys., 16(44), 24128-24164. doi:10.1039/c4cp03465a

Manzo, C., & Garcia-Parajo, M. F. (2015). A review of progress in single particle tracking: from methods to biophysical insights. Reports on Progress in Physics, 78(12), 124601. doi:10.1088/0034-4885/78/12/124601

Haus, J. W., & Kehr, K. W. (1987). Diffusion in regular and disordered lattices. Physics Reports, 150(5-6), 263-406. doi:10.1016/0370-1573(87)90005-6

Bernasconi, J., Beyeler, H. U., Strässler, S., & Alexander, S. (1979). Anomalous Frequency-Dependent Conductivity in Disordered One-Dimensional Systems. Physical Review Letters, 42(13), 819-822. doi:10.1103/physrevlett.42.819

Novikov, D. S., Fieremans, E., Jensen, J. H., & Helpern, J. A. (2011). Random walks with barriers. Nature Physics, 7(6), 508-514. doi:10.1038/nphys1936

Sadegh, S., Higgins, J. L., Mannion, P. C., Tamkun, M. M., & Krapf, D. (2017). Plasma Membrane is Compartmentalized by a Self-Similar Cortical Actin Meshwork. Physical Review X, 7(1). doi:10.1103/physrevx.7.011031

De Wit, G., Albrecht, D., Ewers, H., & Kukura, P. (2018). Revealing Compartmentalized Diffusion in Living Cells with Interferometric Scattering Microscopy. Biophysical Journal, 114(12), 2945-2950. doi:10.1016/j.bpj.2018.05.007

Weigel, A. V., Simon, B., Tamkun, M. M., & Krapf, D. (2011). Ergodic and nonergodic processes coexist in the plasma membrane as observed by single-molecule tracking. Proceedings of the National Academy of Sciences, 108(16), 6438-6443. doi:10.1073/pnas.1016325108

Meroz, Y., Sokolov, I. M., & Klafter, J. (2010). Subdiffusion of mixed origins: When ergodicity and nonergodicity coexist. Physical Review E, 81(1). doi:10.1103/physreve.81.010101

Muñoz-Gil, G., Charalambous, C., García-March, M. A., Garcia-Parajo, M. F., Manzo, C., Lewenstein, M., & Celi, A. (2017). Transient subdiffusion from an Ising environment. Physical Review E, 96(5). doi:10.1103/physreve.96.052140

Montroll, E. W., & Weiss, G. H. (1965). Random Walks on Lattices. II. Journal of Mathematical Physics, 6(2), 167-181. doi:10.1063/1.1704269

Shlesinger, M. F., Klafter, J., & Wong, Y. M. (1982). Random walks with infinite spatial and temporal moments. Journal of Statistical Physics, 27(3), 499-512. doi:10.1007/bf01011089

Klafter, J., & Sokolov, I. M. (2011). First Steps in Random Walks. doi:10.1093/acprof:oso/9780199234868.001.0001

Zaburdaev, V., Denisov, S., & Klafter, J. (2015). Lévy walks. Reviews of Modern Physics, 87(2), 483-530. doi:10.1103/revmodphys.87.483

Bouchaud, J.-P., & Georges, A. (1990). Anomalous diffusion in disordered media: Statistical mechanisms, models and physical applications. Physics Reports, 195(4-5), 127-293. doi:10.1016/0370-1573(90)90099-n

Kosztołowicz, T., Wąsik, S., & Lewandowska, K. D. (2017). How to determine a boundary condition for diffusion at a thin membrane from experimental data. Physical Review E, 96(1). doi:10.1103/physreve.96.010101

Zaburdaev, V. Y. (2006). Random Walk Model with Waiting Times Depending on the Preceding Jump Length. Journal of Statistical Physics, 123(4), 871-881. doi:10.1007/s10955-006-9104-0

Lehner, G. (1963). One Dimensional Random Walk with a Partially Reflecting Barrier. The Annals of Mathematical Statistics, 34(2), 405-412. doi:10.1214/aoms/1177704151

Massignan, P., Manzo, C., Torreno-Pina, J. A., García-Parajo, M. F., Lewenstein, M., & Lapeyre, G. J. (2014). Nonergodic Subdiffusion from Brownian Motion in an Inhomogeneous Medium. Physical Review Letters, 112(15). doi:10.1103/physrevlett.112.150603

Khantha, M., & Balakrishnan, V. (1983). First passage time distributions for finite one-dimensional random walks. Pramana, 21(2), 111-122. doi:10.1007/bf02894735

Dybiec, B., Gudowska-Nowak, E., & Hänggi, P. (2006). Lévy-Brownian motion on finite intervals: Mean first passage time analysis. Physical Review E, 73(4). doi:10.1103/physreve.73.046104

Charalambous, C., Muñoz-Gil, G., Celi, A., Garcia-Parajo, M. F., Lewenstein, M., Manzo, C., & García-March, M. A. (2017). Nonergodic subdiffusion from transient interactions with heterogeneous partners. Physical Review E, 95(3). doi:10.1103/physreve.95.032403

Trimble, W. S., & Grinstein, S. (2015). Barriers to the free diffusion of proteins and lipids in the plasma membrane. Journal of Cell Biology, 208(3), 259-271. doi:10.1083/jcb.201410071

Weiss, G. H., & Havlin, S. (1986). Some properties of a random walk on a comb structure. Physica A: Statistical Mechanics and its Applications, 134(2), 474-482. doi:10.1016/0378-4371(86)90060-9

Baskin, E., & Iomin, A. (2004). Superdiffusion on a Comb Structure. Physical Review Letters, 93(12). doi:10.1103/physrevlett.93.120603

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem