- -

Diffusion Through a Network of Compartments Separated by Partially-Transmitting Boundaries

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Diffusion Through a Network of Compartments Separated by Partially-Transmitting Boundaries

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Muñoz-Gil, Gorka es_ES
dc.contributor.author Garcia March, Miguel Angel es_ES
dc.contributor.author Manzo, Carlo es_ES
dc.contributor.author Celi, Alessio es_ES
dc.contributor.author Lewenstein, Maciej es_ES
dc.date.accessioned 2020-12-12T04:32:24Z
dc.date.available 2020-12-12T04:32:24Z
dc.date.issued 2019-03-18 es_ES
dc.identifier.uri http://hdl.handle.net/10251/156946
dc.description.abstract [EN] We study the random walk of a particle in a compartmentalized environment, as realized in biological samples or solid state compounds. Each compartment is characterized by its length L and the boundaries transmittance T. We identify two relevant spatio-temporal scales that provide alternative descriptions of the dynamics: (i) the microscale, in which the particle position is monitored at constant time intervals; and (ii) the mesoscale, in which it is monitored only when the particle crosses a boundary between compartments. Both descriptions provide-by construction-the same long time behavior. The analytical description obtained at the proposed mesoscale allows for a complete characterization of the complex movement at the microscale, thus representing a fruitful approach for this kind of systems. We show that the presence of disorder in the transmittance is a necessary condition to induce anomalous diffusion, whereas the spatial heterogeneity reduces the degree of subdiffusion and, in some cases, can even compensate for the disorder induced by the stochastic transmittance. es_ES
dc.description.sponsorship This work has been funded by the Spanish Ministry MINECO (National Plan15 Grant: FISICATEAMO No. FIS2016-79508-P, SEVERO OCHOA No. SEV-2015-0522, FPI), European Social Fund, Fundacio Cellex, Generalitat de Catalunya (AGAUR Grant No. 2017 SGR 1341 and CERCA/Program), ERC AdG OSYRIS, EU FETPRO QUIC, and the National Science Centre, Poland-Symfonia Grant No. 2016/20/W/ST4/00314. CM acknowledges funding from the Spanish Ministry of Economy and Competitiveness and the European Social Fund through the Ramon y Cajal program 2015 (RYC-2015-17896) and the BFU2017-85693-R, and from the Generalitat de Catalunya (AGAUR Grant No. 2017SGR940). AC acknowledges financial support from the ERC Synergy Grant UQUAM and the SFB FoQuS (FWF Project No. F4016-N23). GM acknowledges financial support from Fundacio Social La Caixa. AC acknowledges support from the UAB Talent Research program and from the Spanish Ministry of Economy and Competitiveness under Contract No. FIS2017-86530-P. es_ES
dc.language Inglés es_ES
dc.publisher Frontiers Media es_ES
dc.relation.ispartof Frontiers in Physics es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Random walk es_ES
dc.subject Anomalous diffusion es_ES
dc.subject Stochastic processes es_ES
dc.subject Complex systems es_ES
dc.subject Barriers es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Diffusion Through a Network of Compartments Separated by Partially-Transmitting Boundaries es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3389/fphy.2019.00031 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/FP7/319278/EU/Ultracold Quantum Matter/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//FIS2016-79508-P/ES/FRONTERAS DE LA FISICA TEORICA ATOMICA, MOLECULAR, Y OPTICA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/FP7/339106/EU/Open SYstems RevISited: From Brownian motion to quantum simulators/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Generalitat de Catalunya/Grups de Recerca Reconeguts i Finançats per la Generalitat de Catalunya 2017-2019/2017 SGR 1341/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/641122/EU/Quantum simulations of insulators and conductors/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//SEV-2015-0522/ES/AGR-INSTITUTO DE CIENCIAS FOTONICAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NCN//2016%2F20%2FW%2FST4%2F00314/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Generalitat de Catalunya//2017 SGR 940/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/BFU2017-85693-R/ES/ESTUDIO DEL PAPEL DE LAS INTEGRINAS EN LOS MECANISMOS MOLECULARES DE LA CURACION DE LAS HERIDAS A LA ESCALA NANOMETRICA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/FIS2017-86530-P/ES/DISPOSITIVOS DE ONDAS DE MATERIA Y FOTONICOS PARA LAS TECNOLOGIAS CUANTICAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/FWF//F4016-N23/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Muñoz-Gil, G.; Garcia March, MA.; Manzo, C.; Celi, A.; Lewenstein, M. (2019). Diffusion Through a Network of Compartments Separated by Partially-Transmitting Boundaries. Frontiers in Physics. 7:1-6. https://doi.org/10.3389/fphy.2019.00031 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3389/fphy.2019.00031 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 6 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 7 es_ES
dc.identifier.eissn 2296-424X es_ES
dc.relation.pasarela S\409905 es_ES
dc.contributor.funder Fundación Cellex es_ES
dc.contributor.funder European Social Fund es_ES
dc.contributor.funder Austrian Science Fund es_ES
dc.contributor.funder Generalitat de Catalunya es_ES
dc.contributor.funder European Research Council es_ES
dc.contributor.funder National Science Centre, Polonia es_ES
dc.contributor.funder Universitat Autònoma de Barcelona es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Fundació Bancària Caixa d'Estalvis i Pensions de Barcelona es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references Tan, P., Liang, Y., Xu, Q., Mamontov, E., Li, J., Xing, X., & Hong, L. (2018). Gradual Crossover from Subdiffusion to Normal Diffusion: A Many-Body Effect in Protein Surface Water. Physical Review Letters, 120(24). doi:10.1103/physrevlett.120.248101 es_ES
dc.description.references Berkowitz, B., Cortis, A., Dentz, M., & Scher, H. (2006). Modeling non-Fickian transport in geological formations as a continuous time random walk. Reviews of Geophysics, 44(2). doi:10.1029/2005rg000178 es_ES
dc.description.references Metzler, R., Jeon, J.-H., Cherstvy, A. G., & Barkai, E. (2014). Anomalous diffusion models and their properties: non-stationarity, non-ergodicity, and ageing at the centenary of single particle tracking. Phys. Chem. Chem. Phys., 16(44), 24128-24164. doi:10.1039/c4cp03465a es_ES
dc.description.references Manzo, C., & Garcia-Parajo, M. F. (2015). A review of progress in single particle tracking: from methods to biophysical insights. Reports on Progress in Physics, 78(12), 124601. doi:10.1088/0034-4885/78/12/124601 es_ES
dc.description.references Haus, J. W., & Kehr, K. W. (1987). Diffusion in regular and disordered lattices. Physics Reports, 150(5-6), 263-406. doi:10.1016/0370-1573(87)90005-6 es_ES
dc.description.references Bernasconi, J., Beyeler, H. U., Strässler, S., & Alexander, S. (1979). Anomalous Frequency-Dependent Conductivity in Disordered One-Dimensional Systems. Physical Review Letters, 42(13), 819-822. doi:10.1103/physrevlett.42.819 es_ES
dc.description.references Novikov, D. S., Fieremans, E., Jensen, J. H., & Helpern, J. A. (2011). Random walks with barriers. Nature Physics, 7(6), 508-514. doi:10.1038/nphys1936 es_ES
dc.description.references Sadegh, S., Higgins, J. L., Mannion, P. C., Tamkun, M. M., & Krapf, D. (2017). Plasma Membrane is Compartmentalized by a Self-Similar Cortical Actin Meshwork. Physical Review X, 7(1). doi:10.1103/physrevx.7.011031 es_ES
dc.description.references De Wit, G., Albrecht, D., Ewers, H., & Kukura, P. (2018). Revealing Compartmentalized Diffusion in Living Cells with Interferometric Scattering Microscopy. Biophysical Journal, 114(12), 2945-2950. doi:10.1016/j.bpj.2018.05.007 es_ES
dc.description.references Weigel, A. V., Simon, B., Tamkun, M. M., & Krapf, D. (2011). Ergodic and nonergodic processes coexist in the plasma membrane as observed by single-molecule tracking. Proceedings of the National Academy of Sciences, 108(16), 6438-6443. doi:10.1073/pnas.1016325108 es_ES
dc.description.references Meroz, Y., Sokolov, I. M., & Klafter, J. (2010). Subdiffusion of mixed origins: When ergodicity and nonergodicity coexist. Physical Review E, 81(1). doi:10.1103/physreve.81.010101 es_ES
dc.description.references Muñoz-Gil, G., Charalambous, C., García-March, M. A., Garcia-Parajo, M. F., Manzo, C., Lewenstein, M., & Celi, A. (2017). Transient subdiffusion from an Ising environment. Physical Review E, 96(5). doi:10.1103/physreve.96.052140 es_ES
dc.description.references Montroll, E. W., & Weiss, G. H. (1965). Random Walks on Lattices. II. Journal of Mathematical Physics, 6(2), 167-181. doi:10.1063/1.1704269 es_ES
dc.description.references Shlesinger, M. F., Klafter, J., & Wong, Y. M. (1982). Random walks with infinite spatial and temporal moments. Journal of Statistical Physics, 27(3), 499-512. doi:10.1007/bf01011089 es_ES
dc.description.references Klafter, J., & Sokolov, I. M. (2011). First Steps in Random Walks. doi:10.1093/acprof:oso/9780199234868.001.0001 es_ES
dc.description.references Zaburdaev, V., Denisov, S., & Klafter, J. (2015). Lévy walks. Reviews of Modern Physics, 87(2), 483-530. doi:10.1103/revmodphys.87.483 es_ES
dc.description.references Bouchaud, J.-P., & Georges, A. (1990). Anomalous diffusion in disordered media: Statistical mechanisms, models and physical applications. Physics Reports, 195(4-5), 127-293. doi:10.1016/0370-1573(90)90099-n es_ES
dc.description.references Kosztołowicz, T., Wąsik, S., & Lewandowska, K. D. (2017). How to determine a boundary condition for diffusion at a thin membrane from experimental data. Physical Review E, 96(1). doi:10.1103/physreve.96.010101 es_ES
dc.description.references Zaburdaev, V. Y. (2006). Random Walk Model with Waiting Times Depending on the Preceding Jump Length. Journal of Statistical Physics, 123(4), 871-881. doi:10.1007/s10955-006-9104-0 es_ES
dc.description.references Lehner, G. (1963). One Dimensional Random Walk with a Partially Reflecting Barrier. The Annals of Mathematical Statistics, 34(2), 405-412. doi:10.1214/aoms/1177704151 es_ES
dc.description.references Massignan, P., Manzo, C., Torreno-Pina, J. A., García-Parajo, M. F., Lewenstein, M., & Lapeyre, G. J. (2014). Nonergodic Subdiffusion from Brownian Motion in an Inhomogeneous Medium. Physical Review Letters, 112(15). doi:10.1103/physrevlett.112.150603 es_ES
dc.description.references Khantha, M., & Balakrishnan, V. (1983). First passage time distributions for finite one-dimensional random walks. Pramana, 21(2), 111-122. doi:10.1007/bf02894735 es_ES
dc.description.references Dybiec, B., Gudowska-Nowak, E., & Hänggi, P. (2006). Lévy-Brownian motion on finite intervals: Mean first passage time analysis. Physical Review E, 73(4). doi:10.1103/physreve.73.046104 es_ES
dc.description.references Charalambous, C., Muñoz-Gil, G., Celi, A., Garcia-Parajo, M. F., Lewenstein, M., Manzo, C., & García-March, M. A. (2017). Nonergodic subdiffusion from transient interactions with heterogeneous partners. Physical Review E, 95(3). doi:10.1103/physreve.95.032403 es_ES
dc.description.references Trimble, W. S., & Grinstein, S. (2015). Barriers to the free diffusion of proteins and lipids in the plasma membrane. Journal of Cell Biology, 208(3), 259-271. doi:10.1083/jcb.201410071 es_ES
dc.description.references Weiss, G. H., & Havlin, S. (1986). Some properties of a random walk on a comb structure. Physica A: Statistical Mechanics and its Applications, 134(2), 474-482. doi:10.1016/0378-4371(86)90060-9 es_ES
dc.description.references Baskin, E., & Iomin, A. (2004). Superdiffusion on a Comb Structure. Physical Review Letters, 93(12). doi:10.1103/physrevlett.93.120603 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem