Mostrar el registro sencillo del ítem
dc.contributor.author | Muñoz-Gil, Gorka | es_ES |
dc.contributor.author | Garcia March, Miguel Angel | es_ES |
dc.contributor.author | Manzo, Carlo | es_ES |
dc.contributor.author | Celi, Alessio | es_ES |
dc.contributor.author | Lewenstein, Maciej | es_ES |
dc.date.accessioned | 2020-12-12T04:32:24Z | |
dc.date.available | 2020-12-12T04:32:24Z | |
dc.date.issued | 2019-03-18 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/156946 | |
dc.description.abstract | [EN] We study the random walk of a particle in a compartmentalized environment, as realized in biological samples or solid state compounds. Each compartment is characterized by its length L and the boundaries transmittance T. We identify two relevant spatio-temporal scales that provide alternative descriptions of the dynamics: (i) the microscale, in which the particle position is monitored at constant time intervals; and (ii) the mesoscale, in which it is monitored only when the particle crosses a boundary between compartments. Both descriptions provide-by construction-the same long time behavior. The analytical description obtained at the proposed mesoscale allows for a complete characterization of the complex movement at the microscale, thus representing a fruitful approach for this kind of systems. We show that the presence of disorder in the transmittance is a necessary condition to induce anomalous diffusion, whereas the spatial heterogeneity reduces the degree of subdiffusion and, in some cases, can even compensate for the disorder induced by the stochastic transmittance. | es_ES |
dc.description.sponsorship | This work has been funded by the Spanish Ministry MINECO (National Plan15 Grant: FISICATEAMO No. FIS2016-79508-P, SEVERO OCHOA No. SEV-2015-0522, FPI), European Social Fund, Fundacio Cellex, Generalitat de Catalunya (AGAUR Grant No. 2017 SGR 1341 and CERCA/Program), ERC AdG OSYRIS, EU FETPRO QUIC, and the National Science Centre, Poland-Symfonia Grant No. 2016/20/W/ST4/00314. CM acknowledges funding from the Spanish Ministry of Economy and Competitiveness and the European Social Fund through the Ramon y Cajal program 2015 (RYC-2015-17896) and the BFU2017-85693-R, and from the Generalitat de Catalunya (AGAUR Grant No. 2017SGR940). AC acknowledges financial support from the ERC Synergy Grant UQUAM and the SFB FoQuS (FWF Project No. F4016-N23). GM acknowledges financial support from Fundacio Social La Caixa. AC acknowledges support from the UAB Talent Research program and from the Spanish Ministry of Economy and Competitiveness under Contract No. FIS2017-86530-P. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Frontiers Media | es_ES |
dc.relation.ispartof | Frontiers in Physics | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Random walk | es_ES |
dc.subject | Anomalous diffusion | es_ES |
dc.subject | Stochastic processes | es_ES |
dc.subject | Complex systems | es_ES |
dc.subject | Barriers | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Diffusion Through a Network of Compartments Separated by Partially-Transmitting Boundaries | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3389/fphy.2019.00031 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/FP7/319278/EU/Ultracold Quantum Matter/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//FIS2016-79508-P/ES/FRONTERAS DE LA FISICA TEORICA ATOMICA, MOLECULAR, Y OPTICA/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/FP7/339106/EU/Open SYstems RevISited: From Brownian motion to quantum simulators/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/Generalitat de Catalunya/Grups de Recerca Reconeguts i Finançats per la Generalitat de Catalunya 2017-2019/2017 SGR 1341/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/641122/EU/Quantum simulations of insulators and conductors/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//SEV-2015-0522/ES/AGR-INSTITUTO DE CIENCIAS FOTONICAS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/NCN//2016%2F20%2FW%2FST4%2F00314/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/Generalitat de Catalunya//2017 SGR 940/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/BFU2017-85693-R/ES/ESTUDIO DEL PAPEL DE LAS INTEGRINAS EN LOS MECANISMOS MOLECULARES DE LA CURACION DE LAS HERIDAS A LA ESCALA NANOMETRICA/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/FIS2017-86530-P/ES/DISPOSITIVOS DE ONDAS DE MATERIA Y FOTONICOS PARA LAS TECNOLOGIAS CUANTICAS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/FWF//F4016-N23/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Muñoz-Gil, G.; Garcia March, MA.; Manzo, C.; Celi, A.; Lewenstein, M. (2019). Diffusion Through a Network of Compartments Separated by Partially-Transmitting Boundaries. Frontiers in Physics. 7:1-6. https://doi.org/10.3389/fphy.2019.00031 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3389/fphy.2019.00031 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 6 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 7 | es_ES |
dc.identifier.eissn | 2296-424X | es_ES |
dc.relation.pasarela | S\409905 | es_ES |
dc.contributor.funder | Fundación Cellex | es_ES |
dc.contributor.funder | European Social Fund | es_ES |
dc.contributor.funder | Austrian Science Fund | es_ES |
dc.contributor.funder | Generalitat de Catalunya | es_ES |
dc.contributor.funder | European Research Council | es_ES |
dc.contributor.funder | National Science Centre, Polonia | es_ES |
dc.contributor.funder | Universitat Autònoma de Barcelona | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | Fundació Bancària Caixa d'Estalvis i Pensions de Barcelona | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.description.references | Tan, P., Liang, Y., Xu, Q., Mamontov, E., Li, J., Xing, X., & Hong, L. (2018). Gradual Crossover from Subdiffusion to Normal Diffusion: A Many-Body Effect in Protein Surface Water. Physical Review Letters, 120(24). doi:10.1103/physrevlett.120.248101 | es_ES |
dc.description.references | Berkowitz, B., Cortis, A., Dentz, M., & Scher, H. (2006). Modeling non-Fickian transport in geological formations as a continuous time random walk. Reviews of Geophysics, 44(2). doi:10.1029/2005rg000178 | es_ES |
dc.description.references | Metzler, R., Jeon, J.-H., Cherstvy, A. G., & Barkai, E. (2014). Anomalous diffusion models and their properties: non-stationarity, non-ergodicity, and ageing at the centenary of single particle tracking. Phys. Chem. Chem. Phys., 16(44), 24128-24164. doi:10.1039/c4cp03465a | es_ES |
dc.description.references | Manzo, C., & Garcia-Parajo, M. F. (2015). A review of progress in single particle tracking: from methods to biophysical insights. Reports on Progress in Physics, 78(12), 124601. doi:10.1088/0034-4885/78/12/124601 | es_ES |
dc.description.references | Haus, J. W., & Kehr, K. W. (1987). Diffusion in regular and disordered lattices. Physics Reports, 150(5-6), 263-406. doi:10.1016/0370-1573(87)90005-6 | es_ES |
dc.description.references | Bernasconi, J., Beyeler, H. U., Strässler, S., & Alexander, S. (1979). Anomalous Frequency-Dependent Conductivity in Disordered One-Dimensional Systems. Physical Review Letters, 42(13), 819-822. doi:10.1103/physrevlett.42.819 | es_ES |
dc.description.references | Novikov, D. S., Fieremans, E., Jensen, J. H., & Helpern, J. A. (2011). Random walks with barriers. Nature Physics, 7(6), 508-514. doi:10.1038/nphys1936 | es_ES |
dc.description.references | Sadegh, S., Higgins, J. L., Mannion, P. C., Tamkun, M. M., & Krapf, D. (2017). Plasma Membrane is Compartmentalized by a Self-Similar Cortical Actin Meshwork. Physical Review X, 7(1). doi:10.1103/physrevx.7.011031 | es_ES |
dc.description.references | De Wit, G., Albrecht, D., Ewers, H., & Kukura, P. (2018). Revealing Compartmentalized Diffusion in Living Cells with Interferometric Scattering Microscopy. Biophysical Journal, 114(12), 2945-2950. doi:10.1016/j.bpj.2018.05.007 | es_ES |
dc.description.references | Weigel, A. V., Simon, B., Tamkun, M. M., & Krapf, D. (2011). Ergodic and nonergodic processes coexist in the plasma membrane as observed by single-molecule tracking. Proceedings of the National Academy of Sciences, 108(16), 6438-6443. doi:10.1073/pnas.1016325108 | es_ES |
dc.description.references | Meroz, Y., Sokolov, I. M., & Klafter, J. (2010). Subdiffusion of mixed origins: When ergodicity and nonergodicity coexist. Physical Review E, 81(1). doi:10.1103/physreve.81.010101 | es_ES |
dc.description.references | Muñoz-Gil, G., Charalambous, C., García-March, M. A., Garcia-Parajo, M. F., Manzo, C., Lewenstein, M., & Celi, A. (2017). Transient subdiffusion from an Ising environment. Physical Review E, 96(5). doi:10.1103/physreve.96.052140 | es_ES |
dc.description.references | Montroll, E. W., & Weiss, G. H. (1965). Random Walks on Lattices. II. Journal of Mathematical Physics, 6(2), 167-181. doi:10.1063/1.1704269 | es_ES |
dc.description.references | Shlesinger, M. F., Klafter, J., & Wong, Y. M. (1982). Random walks with infinite spatial and temporal moments. Journal of Statistical Physics, 27(3), 499-512. doi:10.1007/bf01011089 | es_ES |
dc.description.references | Klafter, J., & Sokolov, I. M. (2011). First Steps in Random Walks. doi:10.1093/acprof:oso/9780199234868.001.0001 | es_ES |
dc.description.references | Zaburdaev, V., Denisov, S., & Klafter, J. (2015). Lévy walks. Reviews of Modern Physics, 87(2), 483-530. doi:10.1103/revmodphys.87.483 | es_ES |
dc.description.references | Bouchaud, J.-P., & Georges, A. (1990). Anomalous diffusion in disordered media: Statistical mechanisms, models and physical applications. Physics Reports, 195(4-5), 127-293. doi:10.1016/0370-1573(90)90099-n | es_ES |
dc.description.references | Kosztołowicz, T., Wąsik, S., & Lewandowska, K. D. (2017). How to determine a boundary condition for diffusion at a thin membrane from experimental data. Physical Review E, 96(1). doi:10.1103/physreve.96.010101 | es_ES |
dc.description.references | Zaburdaev, V. Y. (2006). Random Walk Model with Waiting Times Depending on the Preceding Jump Length. Journal of Statistical Physics, 123(4), 871-881. doi:10.1007/s10955-006-9104-0 | es_ES |
dc.description.references | Lehner, G. (1963). One Dimensional Random Walk with a Partially Reflecting Barrier. The Annals of Mathematical Statistics, 34(2), 405-412. doi:10.1214/aoms/1177704151 | es_ES |
dc.description.references | Massignan, P., Manzo, C., Torreno-Pina, J. A., García-Parajo, M. F., Lewenstein, M., & Lapeyre, G. J. (2014). Nonergodic Subdiffusion from Brownian Motion in an Inhomogeneous Medium. Physical Review Letters, 112(15). doi:10.1103/physrevlett.112.150603 | es_ES |
dc.description.references | Khantha, M., & Balakrishnan, V. (1983). First passage time distributions for finite one-dimensional random walks. Pramana, 21(2), 111-122. doi:10.1007/bf02894735 | es_ES |
dc.description.references | Dybiec, B., Gudowska-Nowak, E., & Hänggi, P. (2006). Lévy-Brownian motion on finite intervals: Mean first passage time analysis. Physical Review E, 73(4). doi:10.1103/physreve.73.046104 | es_ES |
dc.description.references | Charalambous, C., Muñoz-Gil, G., Celi, A., Garcia-Parajo, M. F., Lewenstein, M., Manzo, C., & García-March, M. A. (2017). Nonergodic subdiffusion from transient interactions with heterogeneous partners. Physical Review E, 95(3). doi:10.1103/physreve.95.032403 | es_ES |
dc.description.references | Trimble, W. S., & Grinstein, S. (2015). Barriers to the free diffusion of proteins and lipids in the plasma membrane. Journal of Cell Biology, 208(3), 259-271. doi:10.1083/jcb.201410071 | es_ES |
dc.description.references | Weiss, G. H., & Havlin, S. (1986). Some properties of a random walk on a comb structure. Physica A: Statistical Mechanics and its Applications, 134(2), 474-482. doi:10.1016/0378-4371(86)90060-9 | es_ES |
dc.description.references | Baskin, E., & Iomin, A. (2004). Superdiffusion on a Comb Structure. Physical Review Letters, 93(12). doi:10.1103/physrevlett.93.120603 | es_ES |