Mostrar el registro sencillo del ítem
dc.contributor.author | Wang, Yadi | es_ES |
dc.contributor.author | Li, Xiaoping | es_ES |
dc.contributor.author | Ruiz García, Rubén | es_ES |
dc.date.accessioned | 2020-12-17T04:33:04Z | |
dc.date.available | 2020-12-17T04:33:04Z | |
dc.date.issued | 2019-08 | es_ES |
dc.identifier.issn | 2168-2267 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/157285 | |
dc.description.abstract | [EN] Relevant gene selection is crucial for analyzing cancer gene expression datasets including two types of tumors in cancer classification. Intrinsic interactions among selected genes cannot be fully identified by most existing gene selection methods. In this paper, we propose a weighted general group lasso (WGGL) model to select cancer genes in groups. A gene grouping heuristic method is presented based on weighted gene co-expression network analysis. To determine the importance of genes and groups, a method for calculating gene and group weights is presented in terms of joint mutual information. To implement the complex calculation process of WGGL, a gene selection algorithm is developed. Experimental results on both random and three cancer gene expression datasets demonstrate that the proposed model achieves better classification performance than two existing state-of-the-art gene selection methods. | es_ES |
dc.description.sponsorship | This work was supported in part by the National Natural Science Foundation of China under Grant 61572127, in part by the National Key Research and Development Program of China under Grant 2017YFB1400801, in part by the Key Research and Development Program in Jiangsu Province under Grant BE2015728, and in part by the Collaborative Innovation Center of Wireless Communications Technology. The work of R. Ruiz was supported by the Spanish Ministry of Economy and Competitiveness through the Project "SCHEYARD-Optimization of Scheduling Problems in Container Yards" partly financed with FEDER funds under Grant DPI2015-65895-R. This paper was recommended by Associate Editor S. Yang. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Institute of Electrical and Electronics Engineers | es_ES |
dc.relation.ispartof | IEEE Transactions on Cybernetics | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Cancer classification | es_ES |
dc.subject | Gene selection | es_ES |
dc.subject | Group lasso | es_ES |
dc.subject | Heuristic | es_ES |
dc.subject | Joint mutual information | es_ES |
dc.subject.classification | ESTADISTICA E INVESTIGACION OPERATIVA | es_ES |
dc.title | Weighted General Group Lasso for Gene Selection in Cancer Classification | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1109/TCYB.2018.2829811 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/NSFC//61572127/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/Jiangsu Province Key Research and Development//BE2015728/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/NKRDPC//2017YFB1400801/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//DPI2015-65895-R/ES/OPTIMIZATION OF SCHEDULING PROBLEMS IN CONTAINER YARDS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-094940-B-I00/ES/OPTIMIZACION DE OPERACIONES EN TERMINALES PORTUARIAS/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat | es_ES |
dc.description.bibliographicCitation | Wang, Y.; Li, X.; Ruiz García, R. (2019). Weighted General Group Lasso for Gene Selection in Cancer Classification. IEEE Transactions on Cybernetics. 49(8):2860-2873. https://doi.org/10.1109/TCYB.2018.2829811 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1109/TCYB.2018.2829811 | es_ES |
dc.description.upvformatpinicio | 2860 | es_ES |
dc.description.upvformatpfin | 2873 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 49 | es_ES |
dc.description.issue | 8 | es_ES |
dc.identifier.pmid | 29993764 | es_ES |
dc.relation.pasarela | S\405877 | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | National Natural Science Foundation of China | es_ES |
dc.contributor.funder | Jiangsu Province Key Research and Development, China | es_ES |
dc.contributor.funder | National Key Research and Development Program of China | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |