- -

Weighted General Group Lasso for Gene Selection in Cancer Classification

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Weighted General Group Lasso for Gene Selection in Cancer Classification

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Wang, Yadi es_ES
dc.contributor.author Li, Xiaoping es_ES
dc.contributor.author Ruiz García, Rubén es_ES
dc.date.accessioned 2020-12-17T04:33:04Z
dc.date.available 2020-12-17T04:33:04Z
dc.date.issued 2019-08 es_ES
dc.identifier.issn 2168-2267 es_ES
dc.identifier.uri http://hdl.handle.net/10251/157285
dc.description.abstract [EN] Relevant gene selection is crucial for analyzing cancer gene expression datasets including two types of tumors in cancer classification. Intrinsic interactions among selected genes cannot be fully identified by most existing gene selection methods. In this paper, we propose a weighted general group lasso (WGGL) model to select cancer genes in groups. A gene grouping heuristic method is presented based on weighted gene co-expression network analysis. To determine the importance of genes and groups, a method for calculating gene and group weights is presented in terms of joint mutual information. To implement the complex calculation process of WGGL, a gene selection algorithm is developed. Experimental results on both random and three cancer gene expression datasets demonstrate that the proposed model achieves better classification performance than two existing state-of-the-art gene selection methods. es_ES
dc.description.sponsorship This work was supported in part by the National Natural Science Foundation of China under Grant 61572127, in part by the National Key Research and Development Program of China under Grant 2017YFB1400801, in part by the Key Research and Development Program in Jiangsu Province under Grant BE2015728, and in part by the Collaborative Innovation Center of Wireless Communications Technology. The work of R. Ruiz was supported by the Spanish Ministry of Economy and Competitiveness through the Project "SCHEYARD-Optimization of Scheduling Problems in Container Yards" partly financed with FEDER funds under Grant DPI2015-65895-R. This paper was recommended by Associate Editor S. Yang. es_ES
dc.language Inglés es_ES
dc.publisher Institute of Electrical and Electronics Engineers es_ES
dc.relation.ispartof IEEE Transactions on Cybernetics es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Cancer classification es_ES
dc.subject Gene selection es_ES
dc.subject Group lasso es_ES
dc.subject Heuristic es_ES
dc.subject Joint mutual information es_ES
dc.subject.classification ESTADISTICA E INVESTIGACION OPERATIVA es_ES
dc.title Weighted General Group Lasso for Gene Selection in Cancer Classification es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1109/TCYB.2018.2829811 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NSFC//61572127/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Jiangsu Province Key Research and Development//BE2015728/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NKRDPC//2017YFB1400801/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//DPI2015-65895-R/ES/OPTIMIZATION OF SCHEDULING PROBLEMS IN CONTAINER YARDS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-094940-B-I00/ES/OPTIMIZACION DE OPERACIONES EN TERMINALES PORTUARIAS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat es_ES
dc.description.bibliographicCitation Wang, Y.; Li, X.; Ruiz García, R. (2019). Weighted General Group Lasso for Gene Selection in Cancer Classification. IEEE Transactions on Cybernetics. 49(8):2860-2873. https://doi.org/10.1109/TCYB.2018.2829811 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1109/TCYB.2018.2829811 es_ES
dc.description.upvformatpinicio 2860 es_ES
dc.description.upvformatpfin 2873 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 49 es_ES
dc.description.issue 8 es_ES
dc.identifier.pmid 29993764 es_ES
dc.relation.pasarela S\405877 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder National Natural Science Foundation of China es_ES
dc.contributor.funder Jiangsu Province Key Research and Development, China es_ES
dc.contributor.funder National Key Research and Development Program of China es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem