- -

Production of microalgal external organic matter in a Chlorella-dominated culture: influence of temperature and stress factors

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Production of microalgal external organic matter in a Chlorella-dominated culture: influence of temperature and stress factors

Mostrar el registro completo del ítem

Gonzalez-Camejo, J.; Paches Giner, MAV.; Marín, A.; Jiménez Benítez, AL.; Seco, A.; Barat, R. (2020). Production of microalgal external organic matter in a Chlorella-dominated culture: influence of temperature and stress factors. Environmental Science: Water Research & Technology. (7):1-14. https://doi.org/10.1039/d0ew00176g

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/157306

Ficheros en el ítem

Metadatos del ítem

Título: Production of microalgal external organic matter in a Chlorella-dominated culture: influence of temperature and stress factors
Autor: Gonzalez-Camejo, Josue Paches Giner, Maria Aguas Vivas Marín, A. Jiménez Benítez, Antonio Luis Seco, A. Barat, Ramón
Entidad UPV: Universitat Politècnica de València. Instituto Universitario de Ingeniería del Agua y del Medio Ambiente - Institut Universitari d'Enginyeria de l'Aigua i Medi Ambient
Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient
Fecha difusión:
Resumen:
[EN] Although microalgae are recognised to release external organic matter (EOM), little is known about this phenomenon in microalgae cultivation systems, especially on a large scale. A study on the effect of microalgae-stressing ...[+]
Palabras clave: Microalgae , Extracellular organic matter , Protein , Polysaccharide , Stress factor
Derechos de uso: Reserva de todos los derechos
Fuente:
Environmental Science: Water Research & Technology. (issn: 2053-1400 )
DOI: 10.1039/d0ew00176g
Editorial:
The Royal Society of Chemistry
Versión del editor: https://doi.org/10.1039/d0ew00176g
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//CTM2014-54980-C2-1-R/ES/OBTENCION DE BIONUTRIENTES Y ENERGIA DEL AGUA RESIDUAL URBANA MEDIANTE CULTIVO DE MICROALGAS, TRATAMIENTOS ANAEROBIOS, CRISTALIZACION DE FOSFORO, ABSORCION DE NH3 Y COMPOSTAJE/
info:eu-repo/grantAgreement/MECD//FPU14%2F05082/ES/FPU14%2F05082/
info:eu-repo/grantAgreement/MINECO//CTM2014-54980-C2-2-R/ES/DESARROLLO DE UN SISTEMA DE CONTROL Y DE SOPORTE A LA DECISION PARA LA OBTENCION DE BIONUTRIENTES Y ENERGIA EN PROCESOS DE TRATAMIENTO DE AGUAS RESIDUALES URBANAS/
Agradecimientos:
This research work has been supported by the Spanish Ministry of Economy and Competitiveness (MINECO, Projects CTM2014-54980-C2-1-R and CTM2014-54980-C2-2-R) jointly with the European Regional Development Fund (ERDF), both ...[+]
Tipo: Artículo

References

Puyol, D., Batstone, D. J., Hülsen, T., Astals, S., Peces, M., & Krömer, J. O. (2017). Resource Recovery from Wastewater by Biological Technologies: Opportunities, Challenges, and Prospects. Frontiers in Microbiology, 7. doi:10.3389/fmicb.2016.02106

Robles, Á., Ruano, M. V., Charfi, A., Lesage, G., Heran, M., Harmand, J., … Ferrer, J. (2018). A review on anaerobic membrane bioreactors (AnMBRs) focused on modelling and control aspects. Bioresource Technology, 270, 612-626. doi:10.1016/j.biortech.2018.09.049

Seco, A., Aparicio, S., González-Camejo, J., Jiménez-Benítez, A., Mateo, O., Mora, J. F., … Ferrer, J. (2018). Resource recovery from sulphate-rich sewage through an innovative anaerobic-based water resource recovery facility (WRRF). Water Science and Technology, 78(9), 1925-1936. doi:10.2166/wst.2018.492 [+]
Puyol, D., Batstone, D. J., Hülsen, T., Astals, S., Peces, M., & Krömer, J. O. (2017). Resource Recovery from Wastewater by Biological Technologies: Opportunities, Challenges, and Prospects. Frontiers in Microbiology, 7. doi:10.3389/fmicb.2016.02106

Robles, Á., Ruano, M. V., Charfi, A., Lesage, G., Heran, M., Harmand, J., … Ferrer, J. (2018). A review on anaerobic membrane bioreactors (AnMBRs) focused on modelling and control aspects. Bioresource Technology, 270, 612-626. doi:10.1016/j.biortech.2018.09.049

Seco, A., Aparicio, S., González-Camejo, J., Jiménez-Benítez, A., Mateo, O., Mora, J. F., … Ferrer, J. (2018). Resource recovery from sulphate-rich sewage through an innovative anaerobic-based water resource recovery facility (WRRF). Water Science and Technology, 78(9), 1925-1936. doi:10.2166/wst.2018.492

Pretel, R., Robles, A., Ruano, M. V., Seco, A., & Ferrer, J. (2016). Economic and environmental sustainability of submerged anaerobic MBR-based (AnMBR-based) technology as compared to aerobic-based technologies for moderate-/high-loaded urban wastewater treatment. Journal of Environmental Management, 166, 45-54. doi:10.1016/j.jenvman.2015.10.004

Stuckey, D. C. (2012). Recent developments in anaerobic membrane reactors. Bioresource Technology, 122, 137-148. doi:10.1016/j.biortech.2012.05.138

Wallace, J., Champagne, P., & Hall, G. (2016). Time series relationships between chlorophyll-a, dissolved oxygen, and pH in three facultative wastewater stabilization ponds. Environmental Science: Water Research & Technology, 2(6), 1032-1040. doi:10.1039/c6ew00202a

Kang, D., Kim, K., Jang, Y., Moon, H., Ju, D., & Jahng, D. (2018). Nutrient removal and community structure of wastewater-borne algal-bacterial consortia grown in raw wastewater with various wavelengths of light. International Biodeterioration & Biodegradation, 126, 10-20. doi:10.1016/j.ibiod.2017.09.022

Li, Y., Slouka, S. A., Henkanatte-Gedera, S. M., Nirmalakhandan, N., & Strathmann, T. J. (2019). Seasonal treatment and economic evaluation of an algal wastewater system for energy and nutrient recovery. Environmental Science: Water Research & Technology, 5(9), 1545-1557. doi:10.1039/c9ew00242a

Price, J. R., Keshani Langroodi, S., Lan, Y., Becker, J. M., Shieh, W. K., Rosen, G. L., & Sales, C. M. (2016). Emerging investigators series: untangling the microbial ecosystem and kinetics in a nitrogen removing photosynthetic high density bioreactor. Environmental Science: Water Research & Technology, 2(4), 705-716. doi:10.1039/c6ew00078a

González-Camejo, J., Jiménez-Benítez, A., Ruano, M. V., Robles, A., Barat, R., & Ferrer, J. (2019). Optimising an outdoor membrane photobioreactor for tertiary sewage treatment. Journal of Environmental Management, 245, 76-85. doi:10.1016/j.jenvman.2019.05.010

González-Camejo, J., Aparicio, S., Jiménez-Benítez, A., Pachés, M., Ruano, M. V., Borrás, L., … Seco, A. (2020). Improving membrane photobioreactor performance by reducing light path: operating conditions and key performance indicators. Water Research, 172, 115518. doi:10.1016/j.watres.2020.115518

Guldhe, A., Kumari, S., Ramanna, L., Ramsundar, P., Singh, P., Rawat, I., & Bux, F. (2017). Prospects, recent advancements and challenges of different wastewater streams for microalgal cultivation. Journal of Environmental Management, 203, 299-315. doi:10.1016/j.jenvman.2017.08.012

Tenorio, R., Fedders, A. C., Strathmann, T. J., & Guest, J. S. (2017). Impact of growth phases on photochemically produced reactive species in the extracellular matrix of algal cultivation systems. Environmental Science: Water Research & Technology, 3(6), 1095-1108. doi:10.1039/c7ew00172j

Togarcheti, S. C., Mediboyina, M. kumar, Chauhan, V. S., Mukherji, S., Ravi, S., & Mudliar, S. N. (2017). Life cycle assessment of microalgae based biodiesel production to evaluate the impact of biomass productivity and energy source. Resources, Conservation and Recycling, 122, 286-294. doi:10.1016/j.resconrec.2017.01.008

Zhang, Y., Kendall, A., & Yuan, J. (2014). A comparison of on-site nutrient and energy recycling technologies in algal oil production. Resources, Conservation and Recycling, 88, 13-20. doi:10.1016/j.resconrec.2014.04.011

González-Camejo, J., Barat, R., Aguado, D., & Ferrer, J. (2020). Continuous 3-year outdoor operation of a flat-panel membrane photobioreactor to treat effluent from an anaerobic membrane bioreactor. Water Research, 169, 115238. doi:10.1016/j.watres.2019.115238

Gupta, S., Pawar, S. B., & Pandey, R. A. (2019). Current practices and challenges in using microalgae for treatment of nutrient rich wastewater from agro-based industries. Science of The Total Environment, 687, 1107-1126. doi:10.1016/j.scitotenv.2019.06.115

Bilad, M. R., Azizo, A. S., Wirzal, M. D. H., Jia Jia, L., Putra, Z. A., Nordin, N. A. H. M., … Yusoff, A. R. M. (2018). Tackling membrane fouling in microalgae filtration using nylon 6,6 nanofiber membrane. Journal of Environmental Management, 223, 23-28. doi:10.1016/j.jenvman.2018.06.007

Razzak, S. A., Ali, S. A. M., Hossain, M. M., & deLasa, H. (2017). Biological CO2 fixation with production of microalgae in wastewater – A review. Renewable and Sustainable Energy Reviews, 76, 379-390. doi:10.1016/j.rser.2017.02.038

Gao, F., Cui, W., Xu, J.-P., Li, C., Jin, W.-H., & Yang, H.-L. (2019). Lipid accumulation properties of Chlorella vulgaris and Scenedesmus obliquus in membrane photobioreactor (MPBR) fed with secondary effluent from municipal wastewater treatment plant. Renewable Energy, 136, 671-676. doi:10.1016/j.renene.2019.01.038

Fortunato, L., Lamprea, A. F., & Leiknes, T. (2020). Evaluation of membrane fouling mitigation strategies in an algal membrane photobioreactor (AMPBR) treating secondary wastewater effluent. Science of The Total Environment, 708, 134548. doi:10.1016/j.scitotenv.2019.134548

Gong, H., Jin, Z., Xu, H., Yuan, Q., Zuo, J., Wu, J., & Wang, K. (2019). Enhanced membrane-based pre-concentration improves wastewater organic matter recovery: Pilot-scale performance and membrane fouling. Journal of Cleaner Production, 206, 307-314. doi:10.1016/j.jclepro.2018.09.209

Luo, Y., Henderson, R. K., & Le-Clech, P. (2019). Characterisation of organic matter in membrane photobioreactors (MPBRs) and its impact on membrane performance. Algal Research, 44, 101682. doi:10.1016/j.algal.2019.101682

Keyvan Hosseini, P., Pajoum Shariati, F., Delavari Amrei, H., & Heydarinasab, A. (2020). The influence of various orifice diameters on cake resistance and pore blocking resistance of a hybrid membrane photobioreactor (HMPBR). Separation and Purification Technology, 235, 116187. doi:10.1016/j.seppur.2019.116187

Wang, L., Pan, B., Gao, Y., Li, C., Ye, J., Yang, L., … Zhang, X. (2019). Efficient membrane microalgal harvesting: Pilot-scale performance and techno-economic analysis. Journal of Cleaner Production, 218, 83-95. doi:10.1016/j.jclepro.2019.01.321

Novoa, A. F., Fortunato, L., Rehman, Z. U., & Leiknes, T. (2020). Evaluating the effect of hydraulic retention time on fouling development and biomass characteristics in an algal membrane photobioreactor treating a secondary wastewater effluent. Bioresource Technology, 309, 123348. doi:10.1016/j.biortech.2020.123348

Bin Liu, Qu, F., Liang, H., Gan, Z., Yu, H., Li, G., & Van der Bruggen, B. (2017). Algae-laden water treatment using ultrafiltration: Individual and combined fouling effects of cells, debris, extracellular and intracellular organic matter. Journal of Membrane Science, 528, 178-186. doi:10.1016/j.memsci.2017.01.032

Robles, A., Ruano, M. V., Ribes, J., & Ferrer, J. (2013). Performance of industrial scale hollow-fibre membranes in a submerged anaerobic MBR (HF-SAnMBR) system at mesophilic and psychrophilic conditions. Separation and Purification Technology, 104, 290-296. doi:10.1016/j.seppur.2012.12.004

Robles, A., Ruano, M. V., Ribes, J., & Ferrer, J. (2012). Sub-critical long-term operation of industrial scale hollow-fibre membranes in a submerged anaerobic MBR (HF-SAnMBR) system. Separation and Purification Technology, 100, 88-96. doi:10.1016/j.seppur.2012.09.010

Robles, Á., Capson-Tojo, G., Gales, A., Viruela, A., Sialve, B., Seco, A., … Ferrer, J. (2020). Performance of a membrane-coupled high-rate algal pond for urban wastewater treatment at demonstration scale. Bioresource Technology, 301, 122672. doi:10.1016/j.biortech.2019.122672

Porcelli, N., & Judd, S. (2010). Chemical cleaning of potable water membranes: A review. Separation and Purification Technology, 71(2), 137-143. doi:10.1016/j.seppur.2009.12.007

Delattre, C., Pierre, G., Laroche, C., & Michaud, P. (2016). Production, extraction and characterization of microalgal and cyanobacterial exopolysaccharides. Biotechnology Advances, 34(7), 1159-1179. doi:10.1016/j.biotechadv.2016.08.001

Sha, J., Lu, Z., Ye, J., Wang, G., Hu, Q., Chen, Y., & Zhang, X. (2019). The inhibition effect of recycled Scenedesmus acuminatus culture media: Influence of growth phase, inhibitor identification and removal. Algal Research, 42, 101612. doi:10.1016/j.algal.2019.101612

Discart, V., Bilad, M. R., Marbelia, L., & Vankelecom, I. F. J. (2014). Impact of changes in broth composition on Chlorella vulgaris cultivation in a membrane photobioreactor (MPBR) with permeate recycle. Bioresource Technology, 152, 321-328. doi:10.1016/j.biortech.2013.11.019

Li, M., Zhu, W., Gao, L., & Lu, L. (2012). Changes in extracellular polysaccharide content and morphology of Microcystis aeruginosa at different specific growth rates. Journal of Applied Phycology, 25(4), 1023-1030. doi:10.1007/s10811-012-9937-7

Barker, D. J., & Stuckey, D. C. (1999). A review of soluble microbial products (SMP) in wastewater treatment systems. Water Research, 33(14), 3063-3082. doi:10.1016/s0043-1354(99)00022-6

Jebali, A., Acién, F. G., Rodriguez Barradas, E., Olguín, E. J., Sayadi, S., & Molina Grima, E. (2018). Pilot-scale outdoor production of Scenedesmus sp. in raceways using flue gases and centrate from anaerobic digestion as the sole culture medium. Bioresource Technology, 262, 1-8. doi:10.1016/j.biortech.2018.04.057

González-Camejo, J., Aparicio, S., Ruano, M. V., Borrás, L., Barat, R., & Ferrer, J. (2019). Effect of ambient temperature variations on an indigenous microalgae-nitrifying bacteria culture dominated by Chlorella. Bioresource Technology, 290, 121788. doi:10.1016/j.biortech.2019.121788

Nagarajan, D., Lee, D.-J., Chen, C.-Y., & Chang, J.-S. (2020). Resource recovery from wastewaters using microalgae-based approaches: A circular bioeconomy perspective. Bioresource Technology, 302, 122817. doi:10.1016/j.biortech.2020.122817

Kwon, G., Kim, H., Song, C., & Jahng, D. (2019). Co-culture of microalgae and enriched nitrifying bacteria for energy-efficient nitrification. Biochemical Engineering Journal, 152, 107385. doi:10.1016/j.bej.2019.107385

Day, J. G., Gong, Y., & Hu, Q. (2017). Microzooplanktonic grazers – A potentially devastating threat to the commercial success of microalgal mass culture. Algal Research, 27, 356-365. doi:10.1016/j.algal.2017.08.024

Qureshi, N., Annous, B. A., Ezeji, T. C., Karcher, P., & Maddox, I. S. (2005). Microbial Cell Factories, 4(1), 24. doi:10.1186/1475-2859-4-24

González-Camejo, J., Serna-García, R., Viruela, A., Pachés, M., Durán, F., Robles, A., … Seco, A. (2017). Short and long-term experiments on the effect of sulphide on microalgae cultivation in tertiary sewage treatment. Bioresource Technology, 244, 15-22. doi:10.1016/j.biortech.2017.07.126

Rossi, S., Casagli, F., Mantovani, M., Mezzanotte, V., & Ficara, E. (2020). Selection of photosynthesis and respiration models to assess the effect of environmental conditions on mixed microalgae consortia grown on wastewater. Bioresource Technology, 305, 122995. doi:10.1016/j.biortech.2020.122995

Luo, Y., Le-Clech, P., & Henderson, R. K. (2018). Assessment of membrane photobioreactor (MPBR) performance parameters and operating conditions. Water Research, 138, 169-180. doi:10.1016/j.watres.2018.03.050

González-Camejo, J., Barat, R., Pachés, M., Murgui, M., Seco, A., & Ferrer, J. (2017). Wastewater nutrient removal in a mixed microalgae–bacteria culture: effect of light and temperature on the microalgae–bacteria competition. Environmental Technology, 39(4), 503-515. doi:10.1080/09593330.2017.1305001

Krustok, I., Odlare, M., Truu, J., & Nehrenheim, E. (2016). Inhibition of nitrification in municipal wastewater-treating photobioreactors: Effect on algal growth and nutrient uptake. Bioresource Technology, 202, 238-243. doi:10.1016/j.biortech.2015.12.020

Ling, Y., Sun, L., Wang, S., Lin, C. S. K., Sun, Z., & Zhou, Z. (2019). Cultivation of oleaginous microalga Scenedesmus obliquus coupled with wastewater treatment for enhanced biomass and lipid production. Biochemical Engineering Journal, 148, 162-169. doi:10.1016/j.bej.2019.05.012

DuBois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., & Smith, F. (1956). Colorimetric Method for Determination of Sugars and Related Substances. Analytical Chemistry, 28(3), 350-356. doi:10.1021/ac60111a017

Peterson, G. L. (1979). Review of the folin phenol protein quantitation method of lowry, rosebrough, farr and randall. Analytical Biochemistry, 100(2), 201-220. doi:10.1016/0003-2697(79)90222-7

APHA , Standard methods for the examination of water and wastewater, 21th. American Public Health Association , American Water Works Association, Water Environment Federation , Washington, USA , 2012

Sheng, G.-P., Yu, H.-Q., & Li, X.-Y. (2010). Extracellular polymeric substances (EPS) of microbial aggregates in biological wastewater treatment systems: A review. Biotechnology Advances, 28(6), 882-894. doi:10.1016/j.biotechadv.2010.08.001

González-Camejo, J., Jiménez-Benítez, A., Ruano, M. V., Robles, A., Barat, R., & Ferrer, J. (2019). Preliminary data set to assess the performance of an outdoor membrane photobioreactor. Data in Brief, 27, 104599. doi:10.1016/j.dib.2019.104599

Rossi, S., Bellucci, M., Marazzi, F., Mezzanotte, V., & Ficara, E. (2018). Activity assessment of microalgal-bacterial consortia based on respirometric tests. Water Science and Technology, 78(1), 207-215. doi:10.2166/wst.2018.078

Lau, A. K. S., Bilad, M. R., Osman, N. B., Marbelia, L., Putra, Z. A., Nordin, N. A. H. M., … Khan, A. L. (2019). Sequencing batch membrane photobioreactor for simultaneous cultivation of aquaculture feed and polishing of real secondary effluent. Journal of Water Process Engineering, 29, 100779. doi:10.1016/j.jwpe.2019.100779

Molinuevo-Salces, B., García-González, M. C., & González-Fernández, C. (2010). Performance comparison of two photobioreactors configurations (open and closed to the atmosphere) treating anaerobically degraded swine slurry. Bioresource Technology, 101(14), 5144-5149. doi:10.1016/j.biortech.2010.02.006

Foladori, P., Petrini, S., & Andreottola, G. (2020). How suspended solids concentration affects nitrification rate in microalgal-bacterial photobioreactors without external aeration. Heliyon, 6(1), e03088. doi:10.1016/j.heliyon.2019.e03088

Marazzi, F., Bellucci, M., Rossi, S., Fornaroli, R., Ficara, E., & Mezzanotte, V. (2019). Outdoor pilot trial integrating a sidestream microalgae process for the treatment of centrate under non optimal climate conditions. Algal Research, 39, 101430. doi:10.1016/j.algal.2019.101430

Robles, A., Ruano, M. V., Ribes, J., Seco, A., & Ferrer, J. (2013). Mathematical modelling of filtration in submerged anaerobic MBRs (SAnMBRs): Long-term validation. Journal of Membrane Science, 446, 303-309. doi:10.1016/j.memsci.2013.07.001

Zhang, X., Devanadera, M. C. E., Roddick, F. A., Fan, L., & Dalida, M. L. P. (2016). Impact of algal organic matter released from Microcystis aeruginosa and Chlorella sp. on the fouling of a ceramic microfiltration membrane. Water Research, 103, 391-400. doi:10.1016/j.watres.2016.07.061

Ozkan, A., & Berberoglu, H. (2013). Cell to substratum and cell to cell interactions of microalgae. Colloids and Surfaces B: Biointerfaces, 112, 302-309. doi:10.1016/j.colsurfb.2013.08.007

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem