- -

Human-robot collaboration for surface treatment tasks

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Human-robot collaboration for surface treatment tasks

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Gracia Calandin, Luis Ignacio es_ES
dc.contributor.author Solanes Galbis, Juan Ernesto es_ES
dc.contributor.author Muñoz-Benavent, Pau es_ES
dc.contributor.author Valls Miro, Jaime es_ES
dc.contributor.author Perez-Vidal, Carlos es_ES
dc.contributor.author Tornero Montserrat, Josep es_ES
dc.date.accessioned 2020-12-19T04:31:44Z
dc.date.available 2020-12-19T04:31:44Z
dc.date.issued 2019 es_ES
dc.identifier.issn 1572-0373 es_ES
dc.identifier.uri http://hdl.handle.net/10251/157497
dc.description.abstract [EN] This paper presents a human-robot closely collaborative solution to cooperatively perform surface treatment tasks such as polishing, grinding, finishing, deburring, etc. The proposed scheme is based on task priority and non-conventional sliding mode control. Furthermore, the proposal includes two force sensors attached to the manipulator end-effector and tool: one sensor is used to properly accomplish the surface treatment task, while the second one is used by the operator to guide the robot tool. The applicability and feasibility of the proposed collaborative solution for robotic surface treatment are substantiated by experimental results using a redundant 7R manipulator: the Sawyer collaborative robot. es_ES
dc.description.sponsorship This work was supported in part by the Spanish Government under the project DPI-201787656-C2-1-R and the Generalitat Valenciana under Grant VALi+d. es_ES
dc.language Inglés es_ES
dc.publisher John Benjamins Publishing Company es_ES
dc.relation.ispartof Interaction Studies es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Cooperative control es_ES
dc.subject Robust control es_ES
dc.subject Robot system es_ES
dc.subject Sliding mode control es_ES
dc.subject.classification ARQUITECTURA Y TECNOLOGIA DE COMPUTADORES es_ES
dc.subject.classification INGENIERIA DE SISTEMAS Y AUTOMATICA es_ES
dc.title Human-robot collaboration for surface treatment tasks es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1075/is.18010.gra es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//APOSTD%2F2016%2F044/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/DPI2017-87656-C2-1-R/ES/VISION ARTIFICIAL Y ROBOTICA COLABORATIVA EN PULIDO DE SUPERFICIES EN LA INDUSTRIA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//AEST%2F2019%2F010/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//ACIF%2F2019%2F007/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería de Sistemas y Automática - Departament d'Enginyeria de Sistemes i Automàtica es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors es_ES
dc.description.bibliographicCitation Gracia Calandin, LI.; Solanes Galbis, JE.; Muñoz-Benavent, P.; Valls Miro, J.; Perez-Vidal, C.; Tornero Montserrat, J. (2019). Human-robot collaboration for surface treatment tasks. Interaction Studies. 20(1):148-184. https://doi.org/10.1075/is.18010.gra es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1075/is.18010.gra es_ES
dc.description.upvformatpinicio 148 es_ES
dc.description.upvformatpfin 184 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 20 es_ES
dc.description.issue 1 es_ES
dc.relation.pasarela S\394961 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references Angel-Fernandez, J. M., & Bonarini, A. (2016). Robots Showing Emotions. Interaction Studies / Social Behaviour and Communication in Biological and Artificial Systems, 17(3), 408-437. doi:10.1075/is.17.3.06ang es_ES
dc.description.references Arnal, L., Solanes, J. E., Molina, J., & Tornero, J. (2017). Detecting dings and dents on specular car body surfaces based on optical flow. Journal of Manufacturing Systems, 45, 306-321. doi:10.1016/j.jmsy.2017.07.006 es_ES
dc.description.references Chiaverini, S., Oriolo, G., & Walker, I. D. (2008). Kinematically Redundant Manipulators. Springer Handbook of Robotics, 245-268. doi:10.1007/978-3-540-30301-5_12 es_ES
dc.description.references Dimeas, F., & Aspragathos, N. (2016). Online Stability in Human-Robot Cooperation with Admittance Control. IEEE Transactions on Haptics, 9(2), 267-278. doi:10.1109/toh.2016.2518670 es_ES
dc.description.references Edwards, C., & Spurgeon, S. (1998). Sliding Mode Control. doi:10.1201/9781498701822 es_ES
dc.description.references Engeberg, E. D., Meek, S. G., & Minor, M. A. (2008). Hybrid Force–Velocity Sliding Mode Control of a Prosthetic Hand. IEEE Transactions on Biomedical Engineering, 55(5), 1572-1581. doi:10.1109/tbme.2007.914672 es_ES
dc.description.references Etzioni, A., & Etzioni, O. (2017). The ethics of robotic caregivers. Interaction Studies / Social Behaviour and Communication in Biological and Artificial Systems, 18(2), 174-190. doi:10.1075/is.18.2.02etz es_ES
dc.description.references De Graaf, M. M. A., Ben Allouch, S., & van Dijk, J. A. G. M. (2016). Long-term evaluation of a social robot in real homes. Interaction Studies / Social Behaviour and Communication in Biological and Artificial Systems, 17(3), 461-490. doi:10.1075/is.17.3.08deg es_ES
dc.description.references Jlassi, S., Tliba, S., & Chitour, Y. (2014). An event-controlled online trajectory generator based on the human-robot interaction force processing. Industrial Robot: An International Journal, 41(1), 15-25. doi:10.1108/ir-01-2013-317 es_ES
dc.description.references Khan, A. M., Yun, D., Zuhaib, K. M., Iqbal, J., Yan, R.-J., Khan, F., & Han, C. (2017). Estimation of Desired Motion Intention and compliance control for upper limb assist exoskeleton. International Journal of Control, Automation and Systems, 15(2), 802-814. doi:10.1007/s12555-015-0151-7 es_ES
dc.description.references Levant, A. (2003). Higher-order sliding modes, differentiation and output-feedback control. International Journal of Control, 76(9-10), 924-941. doi:10.1080/0020717031000099029 es_ES
dc.description.references Levant, A. (2005). Quasi-continuous high-order sliding-mode controllers. IEEE Transactions on Automatic Control, 50(11), 1812-1816. doi:10.1109/tac.2005.858646 es_ES
dc.description.references Martínez, S. S., Ortega, J. G., García, J. G., García, A. S., & Estévez, E. E. (2013). An industrial vision system for surface quality inspection of transparent parts. The International Journal of Advanced Manufacturing Technology, 68(5-8), 1123-1136. doi:10.1007/s00170-013-4904-2 es_ES
dc.description.references Massoud, A. T., ElMaraghy, H. A., & Lahdhiri, T. (1999). Journal of Intelligent and Robotic Systems, 25(3), 227-254. doi:10.1023/a:1008099522350 es_ES
dc.description.references Mitra, A., & Behera, L. (2015). Development of a Fuzzy Sliding Mode Controller with adaptive tuning technique for a MRI guided robot in the human vasculature. 2015 IEEE 13th International Conference on Industrial Informatics (INDIN). doi:10.1109/indin.2015.7281763 es_ES
dc.description.references Molina, J., Solanes, J. E., Arnal, L., & Tornero, J. (2017). On the detection of defects on specular car body surfaces. Robotics and Computer-Integrated Manufacturing, 48, 263-278. doi:10.1016/j.rcim.2017.04.009 es_ES
dc.description.references Nakamura, Y., Hanafusa, H., & Yoshikawa, T. (1987). Task-Priority Based Redundancy Control of Robot Manipulators. The International Journal of Robotics Research, 6(2), 3-15. doi:10.1177/027836498700600201 es_ES
dc.description.references Ortaç, G., Bilgi, A. S., Taşdemir, K., & Kalkan, H. (2016). A hyperspectral imaging based control system for quality assessment of dried figs. Computers and Electronics in Agriculture, 130, 38-47. doi:10.1016/j.compag.2016.10.001 es_ES
dc.description.references Papadopoulos, F., Küster, D., Corrigan, L. J., Kappas, A., & Castellano, G. (2016). Do relative positions and proxemics affect the engagement in a Human-Robot collaborative scenario? Interaction Studies / Social Behaviour and Communication in Biological and Artificial Systems, 17(3), 321-347. doi:10.1075/is.17.3.01pap es_ES
dc.description.references Roswell, A., Xi, F. (Jeff), & Liu, G. (2006). Modelling and analysis of contact stress for automated polishing. International Journal of Machine Tools and Manufacture, 46(3-4), 424-435. doi:10.1016/j.ijmachtools.2005.05.006 es_ES
dc.description.references Sakaino, S., & Ohnishi, K. (2006). Sliding Mode Control Based on Position Control for Contact Motion Applied to Hopping Robot. 2006 IEEE International Conference on Industrial Technology. doi:10.1109/icit.2006.372347 es_ES
dc.description.references Shi, Y., Zheng, D., Hu, L., Wang, Y., & Wang, L. (2011). NC polishing of aspheric surfaces under control of constant pressure using a magnetorheological torque servo. The International Journal of Advanced Manufacturing Technology, 58(9-12), 1061-1073. doi:10.1007/s00170-011-3445-9 es_ES
dc.description.references Siciliano, B., Sciavicco, L., Villani, L., & Oriolo, G. (2009). Robotics. Advanced Textbooks in Control and Signal Processing. doi:10.1007/978-1-84628-642-1 es_ES
dc.description.references Tian, F., Li, Z., Lv, C., & Liu, G. (2016). Polishing pressure investigations of robot automatic polishing on curved surfaces. The International Journal of Advanced Manufacturing Technology, 87(1-4), 639-646. doi:10.1007/s00170-016-8527-2 es_ES
dc.description.references Tornero, J., Armesto, L., Mora, M. C., Monteś, N., Herráez, Á., & Asensio, J. (2012). Detección de Defectos en Carrocerías de Vehículos Basado en Visión Artificial: Diseño e Implantación. Revista Iberoamericana de Automática e Informática Industrial RIAI, 9(1), 93-104. doi:10.1016/j.riai.2011.11.010 es_ES
dc.description.references Utkin, V., Guldner, J., & Shi, J. (2017). Sliding Mode Control in Electro-Mechanical Systems. doi:10.1201/9781420065619 es_ES
dc.description.references Vlachos, E., Jochum, E., & Demers, L.-P. (2016). The Effects of Exposure to Different Social Robots on Attitudes toward Preferences. Interaction Studies / Social Behaviour and Communication in Biological and Artificial Systems, 17(3), 390-404. doi:10.1075/is.17.3.04vla es_ES
dc.description.references Wu, Q., Wang, X., Du, F., & Zhu, Q. (2015). Fuzzy sliding mode control of an upper limb exoskeleton for robot-assisted rehabilitation. 2015 IEEE International Symposium on Medical Measurements and Applications (MeMeA) Proceedings. doi:10.1109/memea.2015.7145246 es_ES
dc.description.references Yun, D., Khan, A. M., Yan, R.-J., Ji, Y., Jang, H., Iqbal, J., … Han, C. (2016). Handling subject arm uncertainties for upper limb rehabilitation robot using robust sliding mode control. International Journal of Precision Engineering and Manufacturing, 17(3), 355-362. doi:10.1007/s12541-016-0044-6 es_ES
dc.description.references ZHOU, J., ZHOU, Z., & AI, Q. (2016). Impedance Control of the Rehabilitation Robot Based on Sliding Mode Control. Mechanical Engineering and Control Systems. doi:10.1142/9789814740616_0030 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem