- -

A Novel Low Processing Time System for Criminal Activities Detection Applied to Command and Control Citizen Security Centers

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

A Novel Low Processing Time System for Criminal Activities Detection Applied to Command and Control Citizen Security Centers

Show simple item record

Files in this item

dc.contributor.author Suarez-Paez, Julio es_ES
dc.contributor.author Salcedo-Gonzalez, Mayra es_ES
dc.contributor.author Climente, Alfonso es_ES
dc.contributor.author Esteve Domingo, Manuel es_ES
dc.contributor.author Gomez, J.A. es_ES
dc.contributor.author Palau Salvador, Carlos Enrique es_ES
dc.contributor.author Pérez Llopis, Israel es_ES
dc.date.accessioned 2020-12-19T04:32:07Z
dc.date.available 2020-12-19T04:32:07Z
dc.date.issued 2019-12 es_ES
dc.identifier.uri http://hdl.handle.net/10251/157506
dc.description.abstract [EN] This paper shows a Novel Low Processing Time System focused on criminal activities detection based on real-time video analysis applied to Command and Control Citizen Security Centers. This system was applied to the detection and classification of criminal events in a real-time video surveillance subsystem in the Command and Control Citizen Security Center of the Colombian National Police. It was developed using a novel application of Deep Learning, specifically a Faster Region-Based Convolutional Network (R-CNN) for the detection of criminal activities treated as "objects" to be detected in real-time video. In order to maximize the system efficiency and reduce the processing time of each video frame, the pretrained CNN (Convolutional Neural Network) model AlexNet was used and the fine training was carried out with a dataset built for this project, formed by objects commonly used in criminal activities such as short firearms and bladed weapons. In addition, the system was trained for street theft detection. The system can generate alarms when detecting street theft, short firearms and bladed weapons, improving situational awareness and facilitating strategic decision making in the Command and Control Citizen Security Center of the Colombian National Police. es_ES
dc.description.sponsorship This work was co-funded by the European Commission as part of H2020 call SEC-12-FCT-2016-Subtopic3 under the project VICTORIA (No. 740754). This publication reflects the views only of the authors and the Commission cannot be held responsible for any use which may be made of the information contained therein. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Information es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Command and Control Citizen Security Center es_ES
dc.subject Command and Control Information System (C2IS) es_ES
dc.subject Crime detection es_ES
dc.subject Homeland security es_ES
dc.subject.classification INGENIERIA TELEMATICA es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.subject.classification LENGUAJES Y SISTEMAS INFORMATICOS es_ES
dc.title A Novel Low Processing Time System for Criminal Activities Detection Applied to Command and Control Citizen Security Centers es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/info10120365 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/740754/EU/Video analysis for Investigation of Criminal and TerrORIst Activities/
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació es_ES
dc.description.bibliographicCitation Suarez-Paez, J.; Salcedo-Gonzalez, M.; Climente, A.; Esteve Domingo, M.; Gomez, J.; Palau Salvador, CE.; Pérez Llopis, I. (2019). A Novel Low Processing Time System for Criminal Activities Detection Applied to Command and Control Citizen Security Centers. Information. 10(12):1-19. https://doi.org/10.3390/info10120365 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/info10120365 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 19 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 10 es_ES
dc.description.issue 12 es_ES
dc.identifier.eissn 2078-2489 es_ES
dc.relation.pasarela S\397766 es_ES
dc.contributor.funder European Commission es_ES
dc.description.references Wang, L., Rodriguez, R. M., & Wang, Y.-M. (2018). A dynamic multi-attribute group emergency decision making method considering expertsr hesitation. International Journal of Computational Intelligence Systems, 11(1), 163. doi:10.2991/ijcis.11.1.13 es_ES
dc.description.references Esteve, M., Perez-Llopis, I., & Palau, C. E. (2013). Friendly Force Tracking COTS solution. IEEE Aerospace and Electronic Systems Magazine, 28(1), 14-21. doi:10.1109/maes.2013.6470440 es_ES
dc.description.references Senst, T., Eiselein, V., Kuhn, A., & Sikora, T. (2017). Crowd Violence Detection Using Global Motion-Compensated Lagrangian Features and Scale-Sensitive Video-Level Representation. IEEE Transactions on Information Forensics and Security, 12(12), 2945-2956. doi:10.1109/tifs.2017.2725820 es_ES
dc.description.references Shi, Y., Tian, Y., Wang, Y., & Huang, T. (2017). Sequential Deep Trajectory Descriptor for Action Recognition With Three-Stream CNN. IEEE Transactions on Multimedia, 19(7), 1510-1520. doi:10.1109/tmm.2017.2666540 es_ES
dc.description.references Arunnehru, J., Chamundeeswari, G., & Bharathi, S. P. (2018). Human Action Recognition using 3D Convolutional Neural Networks with 3D Motion Cuboids in Surveillance Videos. Procedia Computer Science, 133, 471-477. doi:10.1016/j.procs.2018.07.059 es_ES
dc.description.references Kamel, A., Sheng, B., Yang, P., Li, P., Shen, R., & Feng, D. D. (2019). Deep Convolutional Neural Networks for Human Action Recognition Using Depth Maps and Postures. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 49(9), 1806-1819. doi:10.1109/tsmc.2018.2850149 es_ES
dc.description.references Zhang, B., Wang, L., Wang, Z., Qiao, Y., & Wang, H. (2018). Real-Time Action Recognition With Deeply Transferred Motion Vector CNNs. IEEE Transactions on Image Processing, 27(5), 2326-2339. doi:10.1109/tip.2018.2791180 es_ES
dc.description.references Girshick, R., Donahue, J., Darrell, T., & Malik, J. (2016). Region-Based Convolutional Networks for Accurate Object Detection and Segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 38(1), 142-158. doi:10.1109/tpami.2015.2437384 es_ES
dc.description.references Suarez-Paez, J., Salcedo-Gonzalez, M., Esteve, M., Gómez, J. A., Palau, C., & Pérez-Llopis, I. (2018). Reduced computational cost prototype for street theft detection based on depth decrement in Convolutional Neural Network. Application to Command and Control Information Systems (C2IS) in the National Police of Colombia. International Journal of Computational Intelligence Systems, 12(1), 123. doi:10.2991/ijcis.2018.25905186 es_ES
dc.description.references Ren, S., He, K., Girshick, R., & Sun, J. (2017). Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(6), 1137-1149. doi:10.1109/tpami.2016.2577031 es_ES
dc.description.references Hao, S., Wang, P., & Hu, Y. (2019). Haze Image Recognition Based on Brightness Optimization Feedback and Color Correction. Information, 10(2), 81. doi:10.3390/info10020081 es_ES
dc.description.references Peng, M., Wang, C., Chen, T., & Liu, G. (2016). NIRFaceNet: A Convolutional Neural Network for Near-Infrared Face Identification. Information, 7(4), 61. doi:10.3390/info7040061 es_ES
dc.description.references NVIDIA CUDA® Deep Neural Network library (cuDNN)https://developer.nvidia.com/cuda-downloads es_ES
dc.description.references Wu, X., Lu, X., & Leung, H. (2018). A Video Based Fire Smoke Detection Using Robust AdaBoost. Sensors, 18(11), 3780. doi:10.3390/s18113780 es_ES
dc.description.references Park, J. H., Lee, S., Yun, S., Kim, H., & Kim, W.-T. (2019). Dependable Fire Detection System with Multifunctional Artificial Intelligence Framework. Sensors, 19(9), 2025. doi:10.3390/s19092025 es_ES
dc.description.references García-Retuerta, D., Bartolomé, Á., Chamoso, P., & Corchado, J. M. (2019). Counter-Terrorism Video Analysis Using Hash-Based Algorithms. Algorithms, 12(5), 110. doi:10.3390/a12050110 es_ES
dc.description.references Zhao, B., Zhao, B., Tang, L., Han, Y., & Wang, W. (2018). Deep Spatial-Temporal Joint Feature Representation for Video Object Detection. Sensors, 18(3), 774. doi:10.3390/s18030774 es_ES
dc.description.references He, Z., & He, H. (2018). Unsupervised Multi-Object Detection for Video Surveillance Using Memory-Based Recurrent Attention Networks. Symmetry, 10(9), 375. doi:10.3390/sym10090375 es_ES
dc.description.references Muhammad, K., Hamza, R., Ahmad, J., Lloret, J., Wang, H., & Baik, S. W. (2018). Secure Surveillance Framework for IoT Systems Using Probabilistic Image Encryption. IEEE Transactions on Industrial Informatics, 14(8), 3679-3689. doi:10.1109/tii.2018.2791944 es_ES
dc.description.references Barthélemy, J., Verstaevel, N., Forehead, H., & Perez, P. (2019). Edge-Computing Video Analytics for Real-Time Traffic Monitoring in a Smart City. Sensors, 19(9), 2048. doi:10.3390/s19092048 es_ES
dc.description.references Aqib, M., Mehmood, R., Alzahrani, A., Katib, I., Albeshri, A., & Altowaijri, S. M. (2019). Smarter Traffic Prediction Using Big Data, In-Memory Computing, Deep Learning and GPUs. Sensors, 19(9), 2206. doi:10.3390/s19092206 es_ES
dc.description.references Xu, S., Zou, S., Han, Y., & Qu, Y. (2018). Study on the Availability of 4T-APS as a Video Monitor and Radiation Detector in Nuclear Accidents. Sustainability, 10(7), 2172. doi:10.3390/su10072172 es_ES
dc.description.references Plageras, A. P., Psannis, K. E., Stergiou, C., Wang, H., & Gupta, B. B. (2018). Efficient IoT-based sensor BIG Data collection–processing and analysis in smart buildings. Future Generation Computer Systems, 82, 349-357. doi:10.1016/j.future.2017.09.082 es_ES
dc.description.references Jha, S., Dey, A., Kumar, R., & Kumar-Solanki, V. (2019). A Novel Approach on Visual Question Answering by Parameter Prediction using Faster Region Based Convolutional Neural Network. International Journal of Interactive Multimedia and Artificial Intelligence, 5(5), 30. doi:10.9781/ijimai.2018.08.004 es_ES
dc.description.references Cho, S., Baek, N., Kim, M., Koo, J., Kim, J., & Park, K. (2018). Face Detection in Nighttime Images Using Visible-Light Camera Sensors with Two-Step Faster Region-Based Convolutional Neural Network. Sensors, 18(9), 2995. doi:10.3390/s18092995 es_ES
dc.description.references Zhang, J., Xing, W., Xing, M., & Sun, G. (2018). Terahertz Image Detection with the Improved Faster Region-Based Convolutional Neural Network. Sensors, 18(7), 2327. doi:10.3390/s18072327 es_ES
dc.description.references Bakheet, S., & Al-Hamadi, A. (2016). A Discriminative Framework for Action Recognition Using f-HOL Features. Information, 7(4), 68. doi:10.3390/info7040068 es_ES
dc.description.references (2018). Robust Eye Blink Detection Based on Eye Landmarks and Savitzky–Golay Filtering. Information, 9(4), 93. doi:10.3390/info9040093 es_ES
dc.description.references Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2017). ImageNet classification with deep convolutional neural networks. Communications of the ACM, 60(6), 84-90. doi:10.1145/3065386 es_ES
dc.description.references Jetson Embedded Development Kit|NVIDIAhttps://developer.nvidia.com/embedded-computing es_ES
dc.description.references NVIDIA TensorRT|NVIDIA Developerhttps://developer.nvidia.com/tensorrt es_ES
dc.description.references NVIDIA DeepStream SDK|NVIDIA Developerhttps://developer.nvidia.com/deepstream-sdk es_ES
dc.description.references Fraga-Lamas, P., Fernández-Caramés, T., Suárez-Albela, M., Castedo, L., & González-López, M. (2016). A Review on Internet of Things for Defense and Public Safety. Sensors, 16(10), 1644. doi:10.3390/s16101644 es_ES
dc.description.references Gomez, C., Shami, A., & Wang, X. (2018). Machine Learning Aided Scheme for Load Balancing in Dense IoT Networks. Sensors, 18(11), 3779. doi:10.3390/s18113779 es_ES
dc.description.references AMD Embedded RadeonTMhttps://www.amd.com/en/products/embedded-graphics es_ES
dc.subject.ods 11.- Conseguir que las ciudades y los asentamientos humanos sean inclusivos, seguros, resilientes y sostenibles es_ES


This item appears in the following Collection(s)

Show simple item record