Mostrar el registro sencillo del ítem
dc.contributor.author | Trapero, Juan Ramón | es_ES |
dc.contributor.author | Cardós, Manuel | es_ES |
dc.contributor.author | Kourentzes, Nikolaos | es_ES |
dc.date.accessioned | 2020-12-19T04:32:12Z | |
dc.date.available | 2020-12-19T04:32:12Z | |
dc.date.issued | 2019-03 | es_ES |
dc.identifier.issn | 0169-2070 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/157508 | |
dc.description.abstract | [EN] The safety stock calculation requires a measure of the forecast error uncertainty. Such errors are usually assumed to be Gaussian lid (independently and identically distributed). However, deviations from lid lead to a deterioration in the performance of the supply chain. Recent research has shown that, contrary to theoretical approaches, empirical techniques that do not rely on the aforementioned assumptions can enhance the calculation of safety stocks. In particular, GARCH models cope with time-varying heterocedastic forecast error, and kernel density estimation does not need to rely on a determined distribution. However, if the forecast errors are time-varying heterocedastic and do not follow a determined distribution, the previous approaches are inadequate. We overcome this by proposing an optimal combination of the empirical methods that minimizes the asymmetric piecewise linear loss function, also known as the tick loss. The results show that combining quantile forecasts yields safety stocks with a lower cost. The methodology is illustrated with simulations and real data experiments for different lead times. (C) 2018 International Institute of Forecasters. Published by Elsevier B.V. All rights reserved. | es_ES |
dc.description.sponsorship | This work was supported by the European Regional Development Fund and the Spanish Government (MINECO/FEDER, UE) under the project with reference DPI2015-64133-R. The authors would like to acknowledge the useful comments and references of three anonymous referees that led to a considerably improved version of the article. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | International Journal of Forecasting | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Quantile forecasting | es_ES |
dc.subject | Safety stock | es_ES |
dc.subject | Risk | es_ES |
dc.subject | Supply chain | es_ES |
dc.subject | Kernel density estimation | es_ES |
dc.subject | GARCH | es_ES |
dc.subject | Combination | es_ES |
dc.subject | Tick loss | es_ES |
dc.subject.classification | ORGANIZACION DE EMPRESAS | es_ES |
dc.title | Quantile forecast optimal combination to enhance safety stock estimation | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.ijforecast.2018.05.009 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//DPI2015-64133-R/ES/MITIGACION DEL EFECTO LATIGO MEDIANTE NOVEDOSAS TECNICAS DE PREDICCION Y CONTROL DE INVENTARIOS UTILIZANDO EL BIG DATA RESULTANTE DE LAS COLABORACIONES INTEREMPRESARIALES/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Organización de Empresas - Departament d'Organització d'Empreses | es_ES |
dc.description.bibliographicCitation | Trapero, JR.; Cardós, M.; Kourentzes, N. (2019). Quantile forecast optimal combination to enhance safety stock estimation. International Journal of Forecasting. 35(1):239-250. https://doi.org/10.1016/j.ijforecast.2018.05.009 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.ijforecast.2018.05.009 | es_ES |
dc.description.upvformatpinicio | 239 | es_ES |
dc.description.upvformatpfin | 250 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 35 | es_ES |
dc.description.issue | 1 | es_ES |
dc.relation.pasarela | S\367544 | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |