- -

Quantile forecast optimal combination to enhance safety stock estimation

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Quantile forecast optimal combination to enhance safety stock estimation

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Trapero, Juan Ramón es_ES
dc.contributor.author Cardós, Manuel es_ES
dc.contributor.author Kourentzes, Nikolaos es_ES
dc.date.accessioned 2020-12-19T04:32:12Z
dc.date.available 2020-12-19T04:32:12Z
dc.date.issued 2019-03 es_ES
dc.identifier.issn 0169-2070 es_ES
dc.identifier.uri http://hdl.handle.net/10251/157508
dc.description.abstract [EN] The safety stock calculation requires a measure of the forecast error uncertainty. Such errors are usually assumed to be Gaussian lid (independently and identically distributed). However, deviations from lid lead to a deterioration in the performance of the supply chain. Recent research has shown that, contrary to theoretical approaches, empirical techniques that do not rely on the aforementioned assumptions can enhance the calculation of safety stocks. In particular, GARCH models cope with time-varying heterocedastic forecast error, and kernel density estimation does not need to rely on a determined distribution. However, if the forecast errors are time-varying heterocedastic and do not follow a determined distribution, the previous approaches are inadequate. We overcome this by proposing an optimal combination of the empirical methods that minimizes the asymmetric piecewise linear loss function, also known as the tick loss. The results show that combining quantile forecasts yields safety stocks with a lower cost. The methodology is illustrated with simulations and real data experiments for different lead times. (C) 2018 International Institute of Forecasters. Published by Elsevier B.V. All rights reserved. es_ES
dc.description.sponsorship This work was supported by the European Regional Development Fund and the Spanish Government (MINECO/FEDER, UE) under the project with reference DPI2015-64133-R. The authors would like to acknowledge the useful comments and references of three anonymous referees that led to a considerably improved version of the article. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof International Journal of Forecasting es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Quantile forecasting es_ES
dc.subject Safety stock es_ES
dc.subject Risk es_ES
dc.subject Supply chain es_ES
dc.subject Kernel density estimation es_ES
dc.subject GARCH es_ES
dc.subject Combination es_ES
dc.subject Tick loss es_ES
dc.subject.classification ORGANIZACION DE EMPRESAS es_ES
dc.title Quantile forecast optimal combination to enhance safety stock estimation es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.ijforecast.2018.05.009 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//DPI2015-64133-R/ES/MITIGACION DEL EFECTO LATIGO MEDIANTE NOVEDOSAS TECNICAS DE PREDICCION Y CONTROL DE INVENTARIOS UTILIZANDO EL BIG DATA RESULTANTE DE LAS COLABORACIONES INTEREMPRESARIALES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Organización de Empresas - Departament d'Organització d'Empreses es_ES
dc.description.bibliographicCitation Trapero, JR.; Cardós, M.; Kourentzes, N. (2019). Quantile forecast optimal combination to enhance safety stock estimation. International Journal of Forecasting. 35(1):239-250. https://doi.org/10.1016/j.ijforecast.2018.05.009 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.ijforecast.2018.05.009 es_ES
dc.description.upvformatpinicio 239 es_ES
dc.description.upvformatpfin 250 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 35 es_ES
dc.description.issue 1 es_ES
dc.relation.pasarela S\367544 es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem