Aliaga, JI.; Dufrechou, E.; Ezzatti, P.; Quintana-Ortí, ES. (2019). Accelerating the task/data-parallel version of ILUPACK¿s BiCG in multi-CPU/GPU configurations. Parallel Computing. 85:79-87. https://doi.org/10.1016/j.parco.2019.02.005
Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/158174
Title:
|
Accelerating the task/data-parallel version of ILUPACK¿s BiCG in multi-CPU/GPU configurations
|
Author:
|
Aliaga, Jose I.
Dufrechou, Ernesto
Ezzatti, Pablo
Quintana-Ortí, Enrique S.
|
UPV Unit:
|
Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors
|
Issued date:
|
|
Abstract:
|
[EN] ILUPACK is a valuable tool for the solution of sparse linear systems via iterative Krylov subspace-based methods. Its relevance for the solution of real problems has motivated several efforts to enhance its performance ...[+]
[EN] ILUPACK is a valuable tool for the solution of sparse linear systems via iterative Krylov subspace-based methods. Its relevance for the solution of real problems has motivated several efforts to enhance its performance on parallel machines. In this work we focus on exploiting the task-level parallelism derived from the structure of the BiCG method, in addition to the data-level parallelism of the internal matrix computations, with the goal of boosting the performance of a GPU (graphics processing unit) implementation of this solver. First, we revisit the use of dual-GPU systems to execute independent stages of the BiCG concurrently on both accelerators, while leveraging the extra memory space to improve the data access patterns. In addition, we extend our ideas to compute the BiCG method efficiently in multicore platforms with a single GPU. In this line, we study the possibilities offered by hybrid CPU-GPU computations, as well as a novel synchronization-free sparse triangular linear solver. The experimental results with the new solvers show important acceleration factors with respect to the previous data-parallel CPU and GPU versions. (C) 2019 Elsevier B.V. All rights reserved.
[-]
|
Subjects:
|
Sparse linear systems
,
Iterative Krylov-subspace methods
,
Data parallelism
,
ILUPACK preconditioner
,
Graphics processing units (GPUs)
|
Copyrigths:
|
Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
|
Source:
|
Parallel Computing. (issn:
0167-8191
)
|
DOI:
|
10.1016/j.parco.2019.02.005
|
Publisher:
|
Elsevier
|
Publisher version:
|
https://doi.org/10.1016/j.parco.2019.02.005
|
Project ID:
|
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TIN2017-82972-R/ES/TECNICAS ALGORITMICAS PARA COMPUTACION DE ALTO RENDIMIENTO CONSCIENTE DEL CONSUMO ENERGETICO Y RESISTENTE A ERRORES/
|
Thanks:
|
J. I. Aliaga and E. S. Quintana-Orti were supported by project TIN2017-82972-R of the MINECO and FEDER. E. Dufrechou and P. Ezzatti were supported by Programa de Desarrollo de las Ciencias Basicas (PEDECIBA), Uruguay.
|
Type:
|
Artículo
|