- -

Analysis of the stress intensity factor dependence with the crack velocity using a lattice model

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Analysis of the stress intensity factor dependence with the crack velocity using a lattice model

Mostrar el registro completo del ítem

Braun, M.; González Albuixech, VF. (2019). Analysis of the stress intensity factor dependence with the crack velocity using a lattice model. Fatigue & Fracture of Engineering Materials & Structures. 42(5):1075-1084. https://doi.org/10.1111/ffe.12971

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/158238

Ficheros en el ítem

Metadatos del ítem

Título: Analysis of the stress intensity factor dependence with the crack velocity using a lattice model
Autor: Braun, Matías González Albuixech, Vicente Francisco
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials
Fecha difusión:
Resumen:
[EN] In this work, the influence of crack propagation velocity in the stress intensity factor has been studied. The analysis is performed with a lattice method and a linear elastic constitutive model. Numerous researchers ...[+]
Palabras clave: Crack propagation , Dynamic fracture , Lattice model , Stress intensity factor
Derechos de uso: Cerrado
Fuente:
Fatigue & Fracture of Engineering Materials & Structures. (issn: 8756-758X )
DOI: 10.1111/ffe.12971
Editorial:
Blackwell Publishing
Versión del editor: https://doi.org/10.1111/ffe.12971
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//DPI2013-46641-R/ES/DESARROLLO DE MODELOS MICROESTRUCTURALES DE TEJIDO OSEO Y APLICACION A PROCEDIMIENTOS DE EVALUACION DEL RIESGO DE FRACTURA/
Agradecimientos:
This work has been carried out within the framework of the research programme Juan de la Cierva Incorporacion 2015 and research projects DPI2013-46641-R, financed by the Ministerio de Economia, Industria y Competitividad.[+]
Tipo: Artículo

References

KobayashiT DallyJ.Relation between crack velocity and the stress intensity factor in birefringent polymers. ASTM Int;1977.

Dally, J. W. (1979). Dynamic photoelastic studies of fracture. Experimental Mechanics, 19(10), 349-361. doi:10.1007/bf02324250

Freund, L. B., & Douglas, A. S. (1982). The influence of inertia on elastic-plastic antiplane-shear crack growth. Journal of the Mechanics and Physics of Solids, 30(1-2), 59-74. doi:10.1016/0022-5096(82)90013-8 [+]
KobayashiT DallyJ.Relation between crack velocity and the stress intensity factor in birefringent polymers. ASTM Int;1977.

Dally, J. W. (1979). Dynamic photoelastic studies of fracture. Experimental Mechanics, 19(10), 349-361. doi:10.1007/bf02324250

Freund, L. B., & Douglas, A. S. (1982). The influence of inertia on elastic-plastic antiplane-shear crack growth. Journal of the Mechanics and Physics of Solids, 30(1-2), 59-74. doi:10.1016/0022-5096(82)90013-8

LAM, P., & FREUND, L. (1985). Analysis of dynamic growth of a tensile crack in an elastic-plastic material. Journal of the Mechanics and Physics of Solids, 33(2), 153-167. doi:10.1016/0022-5096(85)90028-6

Costanzo, F., & Walton, J. R. (1998). International Journal of Fracture, 91(4), 373-389. doi:10.1023/a:1007494031596

Bui, T. Q. (2015). Extended isogeometric dynamic and static fracture analysis for cracks in piezoelectric materials using NURBS. Computer Methods in Applied Mechanics and Engineering, 295, 470-509. doi:10.1016/j.cma.2015.07.005

Bui, T. Q., Hirose, S., Zhang, C., Rabczuk, T., Wu, C.-T., Saitoh, T., & Lei, J. (2016). Extended isogeometric analysis for dynamic fracture in multiphase piezoelectric/piezomagnetic composites. Mechanics of Materials, 97, 135-163. doi:10.1016/j.mechmat.2016.03.001

Doan, D. H., Bui, T. Q., Van Do, T., & Duc, N. D. (2017). A rate-dependent hybrid phase field model for dynamic crack propagation. Journal of Applied Physics, 122(11), 115102. doi:10.1063/1.4990073

Dominguez, J., & Gallego, R. (1992). Time domain boundary element method for dynamic stress intensity factor computations. International Journal for Numerical Methods in Engineering, 33(3), 635-647. doi:10.1002/nme.1620330309

Szelestey, P., Heino, P., Kertész, J., & Kaski, K. (2000). Effect of anisotropy on the instability of crack propagation. Physical Review E, 61(4), 3378-3383. doi:10.1103/physreve.61.3378

Moran, B., & Shih, C. F. (1987). Crack tip and associated domain integrals from momentum and energy balance. Engineering Fracture Mechanics, 27(6), 615-642. doi:10.1016/0013-7944(87)90155-x

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem