- -

CMMSE algorithms for constructing doubly stochastic matrices with the relative gain array (combined matrix) A circle A(-T)

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

CMMSE algorithms for constructing doubly stochastic matrices with the relative gain array (combined matrix) A circle A(-T)

Mostrar el registro completo del ítem

Fuster Capilla, RR.; Gasso Matoses, MT.; Gimenez Manglano, MI. (2019). CMMSE algorithms for constructing doubly stochastic matrices with the relative gain array (combined matrix) A circle A(-T). Journal of Mathematical Chemistry. 57(7):1700-1709. https://doi.org/10.1007/s10910-019-01032-1

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/158844

Ficheros en el ítem

Metadatos del ítem

Título: CMMSE algorithms for constructing doubly stochastic matrices with the relative gain array (combined matrix) A circle A(-T)
Autor: Fuster Capilla, Robert Ricard Gasso Matoses, María Teresa Gimenez Manglano, María Isabel
Entidad UPV: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Fecha difusión:
Resumen:
[EN] The Combined matrix of a nonsingular matrix A is defined by phi(A)=A T where degrees means the Hadamard (entrywise) product. If the matrix A describes the relation between inputs and outputs in a multivariable process ...[+]
Palabras clave: Hadamard product , Combined matrix , Doubly stochastic matrix , Hessenberg matrix , Householder matrix , Orthogonal matrix , Unitary matrix , Relative gain array
Derechos de uso: Reserva de todos los derechos
Fuente:
Journal of Mathematical Chemistry. (issn: 0259-9791 )
DOI: 10.1007/s10910-019-01032-1
Editorial:
Springer-Verlag
Versión del editor: https://doi.org/10.1007/s10910-019-01032-1
Código del Proyecto:
info:eu-repo/grantAgreement/AEI//MTM2017-90682-REDT/ES/RED TEMATICA DE ALGEBRA LINEAL, ANALISIS MATRICIAL Y APLICACIONES/
info:eu-repo/grantAgreement/MINECO//MTM2014-58159-P/ES/PRECONDICIONADORES PARA SISTEMAS DE ECUACIONES LINEALES, PROBLEMAS DE MINIMOS CUADRADOS, CALCULO DE VALORES PROPIOS Y APLICACIONES TECNOLOGICAS/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MTM2017-85669-P/ES/PROBLEMAS MATRICIALES: COMPUTACION, TEORIA Y APLICACIONES/
Agradecimientos:
This work has been supported by Spanish Ministerio de Economia y Competitividad Grants MTM2014-58159-P, MTM2017-85669-P and MTM2017-90682-REDT.
Tipo: Artículo

References

E. Bristol, On a new measure of interaction for multivariable process control. IEEE Trans. Autom. Control 1, 133–134 (1966)

R.A. Brualdi, Some applications of doubly stochastic matrices. Linear Algebra Appl. 107, 77–100 (1988)

R. Bru, M.T. Gassó, I. Giménez, M. Santana, Nonnegative combined matrices. J. Appl. Math. (2014). https://doi.org/10.1155/2014/182354 [+]
E. Bristol, On a new measure of interaction for multivariable process control. IEEE Trans. Autom. Control 1, 133–134 (1966)

R.A. Brualdi, Some applications of doubly stochastic matrices. Linear Algebra Appl. 107, 77–100 (1988)

R. Bru, M.T. Gassó, I. Giménez, M. Santana, Nonnegative combined matrices. J. Appl. Math. (2014). https://doi.org/10.1155/2014/182354

J. Cremona, Letter to the Editor. Am. Math. Monthly 4, 757 (2014)

M. Fiedler, Relations between the diagonal entries of two mutually inverse positive definite matrices. Czechosl. Math. J. 14, 39–51 (1964)

M. Fiedler, T.L. Markham, Combined matrices in special classes of matrices. Linear Algebra Appl. 435, 1945–1955 (2011)

F.R. Gantmacher, The theory of matrices (American Mathematical Society, Chelsea, 1960)

V.E. Golender, V.V. Drboglav, A.B. Rosenblit, Graph potentials method and its application for chemical information processing. J. Chem. Inf. Comput. Sci. 21(4), 196–204 (1981). https://doi.org/10.1021/ci00032a004

R.A. Horn, C.R. Johnson, Topics in matrix analysis (Cambridge University Press, Cambridge, 1991)

C. Johnson, H. Shapiro, Mathematical aspects of the relarive gain array. SIAM J. Algebraic Discrete Methods 7, 627–644 (1986)

V. Kariwala, S. Skogestad, J.F. Forbes, Relative gain array for norm-bounded uncertain systems. Ind. Eng. Chem. Res. 45(5), 1751–1757 (2006). https://doi.org/10.1021/ie050790r

H. Liebeck, A. Osborne, The generation of all rational orthogonal matrices. Am. Math. Monthly 98(2), 131–133 (1991)

T.J. McAvoy, Interaction Analysis: Principles and Applications (Instrument Society of America, Pittsburgh, 1983)

B. Mourad, Generalization of some results concerning eigenvalues of a certain class of matrices and some applications. Linear Multilinear Algebra 61, 1234–1243 (2013)

A. Papadourakis et al., Relative gain array for units in plants with recycle. Ind. Eng. Chem. Res. 26(6), 1259–1262 (1987)

H. Wang et al., Design and control of extractive distillation based on an effective relative gain array. Chem. Eng. Technol. (2016). https://doi.org/10.1002/ceat.201500202

M. Hovd, S. Skogestad, Pairing criteria for decentralized control of unstable plants. Ind. Eng. Chem. Res. 33(9), 2134–2139 (1994). https://doi.org/10.1021/ie00033a016

H. Wang, Y. Li, S. Weiyi, Y. Zhang, J. Guo, C. Li, Design and control of extractive distillation based on effective relative gain array. Chem. Eng. Technol. 39, 1–9 (2016). https://doi.org/10.1002/ceat.201500202

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem