- -

Application of Supervised Machine Learning for Behavioral Biomarkers of Autism Spectrum Disorder Based on Electrodermal Activity and Virtual Reality

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Application of Supervised Machine Learning for Behavioral Biomarkers of Autism Spectrum Disorder Based on Electrodermal Activity and Virtual Reality

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Alcañiz Raya, Mariano Luis es_ES
dc.contributor.author CHICCHI-GIGLIOLI, IRENE ALICE es_ES
dc.contributor.author Marín-Morales, Javier es_ES
dc.contributor.author Higuera-Trujillo, Juan Luis es_ES
dc.contributor.author Olmos-Raya, Elena es_ES
dc.contributor.author Minissi, Maria Eleonora es_ES
dc.contributor.author Teruel García, Gonzalo es_ES
dc.contributor.author Sirera, Marian es_ES
dc.contributor.author Abad, Luis es_ES
dc.date.accessioned 2021-01-19T04:31:47Z
dc.date.available 2021-01-19T04:31:47Z
dc.date.issued 2020-04-03 es_ES
dc.identifier.issn 1662-5161 es_ES
dc.identifier.uri http://hdl.handle.net/10251/159335
dc.description.abstract [EN] Objective: Sensory processing is the ability to capture, elaborate, and integrate information through the five senses and is impaired in over 90% of children with autism spectrum disorder (ASD). The ASD population shows hyper¿hypo sensitiveness to sensory stimuli that can generate alteration in information processing, affecting cognitive and social responses to daily life situations. Structured and semi-structured interviews are generally used for ASD assessment, and the evaluation relies on the examiner¿s subjectivity and expertise, which can lead to misleading outcomes. Recently, there has been a growing need for more objective, reliable, and valid diagnostic measures, such as biomarkers, to distinguish typical from atypical functioning and to reliably track the progression of the illness, helping to diagnose ASD. Implicit measures and ecological valid settings have been showing high accuracy on predicting outcomes and correctly classifying populations in categories. Methods: Two experiments investigated whether sensory processing can discriminate between ASD and typical development (TD) populations using electrodermal activity (EDA) in two multimodal virtual environments (VE): forest VE and city VE. In the first experiment, 24 children with ASD diagnosis and 30 TDs participated in both virtual experiences, and changes in EDA have been recorded before and during the presentation of visual, auditive, and olfactive stimuli. In the second experiment, 40 children have been added to test the model of experiment 1. Results: The first exploratory results on EDA comparison models showed that the integration of visual, auditive, and olfactive stimuli in the forest environment provided higher accuracy (90.3%) on sensory dysfunction discrimination than specific stimuli. In the second experiment, 92 subjects experienced the forest VE, and results on 72 subjects showed that stimuli integration achieved an accuracy of 83.33%. The final confirmatory test set (n = 20) achieved 85% accuracy, simulating a real application of the models. Further relevant result concerns the visual stimuli condition in the first experiment, which achieved 84.6% of accuracy in recognizing ASD sensory dysfunction. Conclusion: According to our studies¿ results, implicit measures, such as EDA, and ecological valid settings can represent valid quantitative methods, along with traditional assessment measures, to classify ASD population, enhancing knowledge on the development of relevant specific treatments. es_ES
dc.description.sponsorship This work was supported by the Spanish Ministry of Economy, Industry, and Competitiveness-funded project Immersive Virtual Environment for the Evaluation and Training of Children with Autism Spectrum Disorder: T Room (IDI-20170912) and by the Generalitat Valenciana-funded project REBRAND (PROMETEU/2019/105). es_ES
dc.language Inglés es_ES
dc.publisher Frontiers Media SA es_ES
dc.relation.ispartof Frontiers in Human Neuroscience es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Autism spectrum disorder es_ES
dc.subject Sensory dysfunction es_ES
dc.subject Virtual reality es_ES
dc.subject Electrodermal activity es_ES
dc.subject Assessment es_ES
dc.subject.classification ORGANIZACION DE EMPRESAS es_ES
dc.subject.classification EXPRESION GRAFICA EN LA INGENIERIA es_ES
dc.title Application of Supervised Machine Learning for Behavioral Biomarkers of Autism Spectrum Disorder Based on Electrodermal Activity and Virtual Reality es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3389/fnhum.2020.00090 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//IDI-20170912/ES/Virtual Immersive Environment for the Assessment and Training of Autism Spectrum Disorder children (T-ROOM)/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2019%2F105/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Gráfica - Departament d'Enginyeria Gràfica es_ES
dc.description.bibliographicCitation Alcañiz Raya, ML.; Chicchi-Giglioli, IA.; Marín-Morales, J.; Higuera-Trujillo, JL.; Olmos-Raya, E.; Minissi, ME.; Teruel García, G.... (2020). Application of Supervised Machine Learning for Behavioral Biomarkers of Autism Spectrum Disorder Based on Electrodermal Activity and Virtual Reality. Frontiers in Human Neuroscience. 14:1-16. https://doi.org/10.3389/fnhum.2020.00090 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3389/fnhum.2020.00090 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 16 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 14 es_ES
dc.identifier.pmid 32317949 es_ES
dc.identifier.pmcid PMC7146061 es_ES
dc.relation.pasarela S\406952 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Ministerio de Economía, Industria y Competitividad es_ES
dc.description.references Allen, R., Davis, R., & Hill, E. (2012). The Effects of Autism and Alexithymia on Physiological and Verbal Responsiveness to Music. Journal of Autism and Developmental Disorders, 43(2), 432-444. doi:10.1007/s10803-012-1587-8 es_ES
dc.description.references Anagnostou, E., Zwaigenbaum, L., Szatmari, P., Fombonne, E., Fernandez, B. A., Woodbury-Smith, M., … Scherer, S. W. (2014). Autism spectrum disorder: advances in evidence-based practice. Canadian Medical Association Journal, 186(7), 509-519. doi:10.1503/cmaj.121756 es_ES
dc.description.references Ashwin, C., Chapman, E., Howells, J., Rhydderch, D., Walker, I., & Baron-Cohen, S. (2014). Enhanced olfactory sensitivity in autism spectrum conditions. Molecular Autism, 5(1), 53. doi:10.1186/2040-2392-5-53 es_ES
dc.description.references Baron-Cohen, S. (1990). Autism: A Specific Cognitive Disorder of & lsquo;Mind-Blindness’. International Review of Psychiatry, 2(1), 81-90. doi:10.3109/09540269009028274 es_ES
dc.description.references Baron-Cohen, S., Ashwin, E., Ashwin, C., Tavassoli, T., & Chakrabarti, B. (2009). Talent in autism: hyper-systemizing, hyper-attention to detail and sensory hypersensitivity. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1522), 1377-1383. doi:10.1098/rstb.2008.0337 es_ES
dc.description.references Barry, R. J., & James, A. L. (1988). Coding of stimulus parameters in autistic, retarded, and normal children: evidence for a two-factor theory of autism. International Journal of Psychophysiology, 6(2), 139-149. doi:10.1016/0167-8760(88)90045-1 es_ES
dc.description.references Bekele, E., Crittendon, J., Zheng, Z., Swanson, A., Weitlauf, A., Warren, Z., & Sarkar, N. (2014). Assessing the Utility of a Virtual Environment for Enhancing Facial Affect Recognition in Adolescents with Autism. Journal of Autism and Developmental Disorders, 44(7), 1641-1650. doi:10.1007/s10803-014-2035-8 es_ES
dc.description.references Benedek, M., & Kaernbach, C. (2010). A continuous measure of phasic electrodermal activity. Journal of Neuroscience Methods, 190(1), 80-91. doi:10.1016/j.jneumeth.2010.04.028 es_ES
dc.description.references Blascovich, J., Loomis, J., Beall, A. C., Swinth, K. R., Hoyt, C. L., & Bailenson, J. N. (2002). TARGET ARTICLE: Immersive Virtual Environment Technology as a Methodological Tool for Social Psychology. Psychological Inquiry, 13(2), 103-124. doi:10.1207/s15327965pli1302_01 es_ES
dc.description.references Boucsein, W. (2012). Electrodermal Activity. doi:10.1007/978-1-4614-1126-0 es_ES
dc.description.references Brunswik, E. (1955). Representative design and probabilistic theory in a functional psychology. Psychological Review, 62(3), 193-217. doi:10.1037/h0047470 es_ES
dc.description.references BUJNAKOVA, I., ONDREJKA, I., MESTANIK, M., VISNOVCOVA, Z., MESTANIKOVA, A., HRTANEK, I., … TONHAJZEROVA, I. (2016). Autism Spectrum Disorder Is Associated With Autonomic Underarousal. Physiological Research, S673-S682. doi:10.33549/physiolres.933528 es_ES
dc.description.references Chang, C.-C., & Lin, C.-J. (2011). LIBSVM. ACM Transactions on Intelligent Systems and Technology, 2(3), 1-27. doi:10.1145/1961189.1961199 es_ES
dc.description.references Chang, M. C., Parham, L. D., Blanche, E. I., Schell, A., Chou, C.-P., Dawson, M., & Clark, F. (2012). Autonomic and Behavioral Responses of Children With Autism to Auditory Stimuli. American Journal of Occupational Therapy, 66(5), 567-576. doi:10.5014/ajot.2012.004242 es_ES
dc.description.references CHAYTOR, N., SCHMITTEREDGECOMBE, M., & BURR, R. (2006). Improving the ecological validity of executive functioning assessment. Archives of Clinical Neuropsychology, 21(3), 217-227. doi:10.1016/j.acn.2005.12.002 es_ES
dc.description.references Chen, C. P., Keown, C. L., Jahedi, A., Nair, A., Pflieger, M. E., Bailey, B. A., & Müller, R.-A. (2015). Diagnostic classification of intrinsic functional connectivity highlights somatosensory, default mode, and visual regions in autism. NeuroImage: Clinical, 8, 238-245. doi:10.1016/j.nicl.2015.04.002 es_ES
dc.description.references Chita-Tegmark, M. (2016). Attention Allocation in ASD: a Review and Meta-analysis of Eye-Tracking Studies. Review Journal of Autism and Developmental Disorders, 3(3), 209-223. doi:10.1007/s40489-016-0077-x es_ES
dc.description.references Fenwick, T. (2014). Social Media and Medical Professionalism. Academic Medicine, 89(10), 1331-1334. doi:10.1097/acm.0000000000000436 es_ES
dc.description.references Delobel-Ayoub, M., Ehlinger, V., Klapouszczak, D., Maffre, T., Raynaud, J.-P., Delpierre, C., & Arnaud, C. (2015). Socioeconomic Disparities and Prevalence of Autism Spectrum Disorders and Intellectual Disability. PLOS ONE, 10(11), e0141964. doi:10.1371/journal.pone.0141964 es_ES
dc.description.references Di Martino, A., Yan, C.-G., Li, Q., Denio, E., Castellanos, F. X., Alaerts, K., … Milham, M. P. (2013). The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism. Molecular Psychiatry, 19(6), 659-667. doi:10.1038/mp.2013.78 es_ES
dc.description.references Dudova, I., Vodicka, J., Havlovicova, M., Sedlacek, Z., Urbanek, T., & Hrdlicka, M. (2011). Odor detection threshold, but not odor identification, is impaired in children with autism. European Child & Adolescent Psychiatry, 20(7), 333-340. doi:10.1007/s00787-011-0177-1 es_ES
dc.description.references Fagius, J., & Wallin, B. G. (1980). Sympathetic reflex latencies and conduction velocities in normal man. Journal of the Neurological Sciences, 47(3), 433-448. doi:10.1016/0022-510x(80)90098-2 es_ES
dc.description.references Fenning, R. M., Baker, J. K., Baucom, B. R., Erath, S. A., Howland, M. A., & Moffitt, J. (2017). Electrodermal Variability and Symptom Severity in Children with Autism Spectrum Disorder. Journal of Autism and Developmental Disorders, 47(4), 1062-1072. doi:10.1007/s10803-016-3021-0 es_ES
dc.description.references Forscher, P. S., Lai, C. K., Axt, J. R., Ebersole, C. R., Herman, M., Devine, P. G., & Nosek, B. A. (2019). A meta-analysis of procedures to change implicit measures. Journal of Personality and Social Psychology, 117(3), 522-559. doi:10.1037/pspa0000160 es_ES
dc.description.references Francis, K. (2007). Autism interventions: a critical update. Developmental Medicine & Child Neurology, 47(7), 493-499. doi:10.1111/j.1469-8749.2005.tb01178.x es_ES
dc.description.references Friston, K. J., Stephan, K. E., Montague, R., & Dolan, R. J. (2014). Computational psychiatry: the brain as a phantastic organ. The Lancet Psychiatry, 1(2), 148-158. doi:10.1016/s2215-0366(14)70275-5 es_ES
dc.description.references Gillberg, C., & Rasmussen, P. (1994). Brief report: Four case histories and a literature review of williams syndrome and autistic behavior. Journal of Autism and Developmental Disorders, 24(3), 381-393. doi:10.1007/bf02172235 es_ES
dc.description.references Hirstein, W., Iversen, P., & Ramachandran, V. S. (2001). Autonomic responses of autistic children to people and objects. Proceedings of the Royal Society of London. Series B: Biological Sciences, 268(1479), 1883-1888. doi:10.1098/rspb.2001.1724 es_ES
dc.description.references Hubert, B. E., Wicker, B., Monfardini, E., & Deruelle, C. (2009). Electrodermal reactivity to emotion processing in adults with autistic spectrum disorders. Autism, 13(1), 9-19. doi:10.1177/1362361308091649 es_ES
dc.description.references Hyde, K. K., Novack, M. N., LaHaye, N., Parlett-Pelleriti, C., Anden, R., Dixon, D. R., & Linstead, E. (2019). Applications of Supervised Machine Learning in Autism Spectrum Disorder Research: a Review. Review Journal of Autism and Developmental Disorders, 6(2), 128-146. doi:10.1007/s40489-019-00158-x es_ES
dc.description.references JOSEPH, R. M., EHRMAN, K., MCNALLY, R., & KEEHN, B. (2008). Affective response to eye contact and face recognition ability in children with ASD. Journal of the International Neuropsychological Society, 14(6), 947-955. doi:10.1017/s1355617708081344 es_ES
dc.description.references Kandalaft, M. R., Didehbani, N., Krawczyk, D. C., Allen, T. T., & Chapman, S. B. (2012). Virtual Reality Social Cognition Training for Young Adults with High-Functioning Autism. Journal of Autism and Developmental Disorders, 43(1), 34-44. doi:10.1007/s10803-012-1544-6 es_ES
dc.description.references Kreibig, S. D. (2010). Autonomic nervous system activity in emotion: A review. Biological Psychology, 84(3), 394-421. doi:10.1016/j.biopsycho.2010.03.010 es_ES
dc.description.references Kylliäinen, A., & Hietanen, J. K. (2006). Skin Conductance Responses to Another Person’s Gaze in Children with Autism. Journal of Autism and Developmental Disorders, 36(4), 517-525. doi:10.1007/s10803-006-0091-4 es_ES
dc.description.references Kylliäinen, A., Wallace, S., Coutanche, M. N., Leppänen, J. M., Cusack, J., Bailey, A. J., & Hietanen, J. K. (2012). Affective-motivational brain responses to direct gaze in children with autism spectrum disorder. Journal of Child Psychology and Psychiatry, 53(7), 790-797. doi:10.1111/j.1469-7610.2011.02522.x es_ES
dc.description.references Ledoux, K., Coderre, E., Bosley, L., Buz, E., Gangopadhyay, I., & Gordon, B. (2015). The concurrent use of three implicit measures (eye movements, pupillometry, and event-related potentials) to assess receptive vocabulary knowledge in normal adults. Behavior Research Methods, 48(1), 285-305. doi:10.3758/s13428-015-0571-6 es_ES
dc.description.references Leekam, S. R., Nieto, C., Libby, S. J., Wing, L., & Gould, J. (2006). Describing the Sensory Abnormalities of Children and Adults with Autism. Journal of Autism and Developmental Disorders, 37(5), 894-910. doi:10.1007/s10803-006-0218-7 es_ES
dc.description.references Levy, A., & Perry, A. (2011). Outcomes in adolescents and adults with autism: A review of the literature. Research in Autism Spectrum Disorders, 5(4), 1271-1282. doi:10.1016/j.rasd.2011.01.023 es_ES
dc.description.references Li, B., Sharma, A., Meng, J., Purushwalkam, S., & Gowen, E. (2017). Applying machine learning to identify autistic adults using imitation: An exploratory study. PLOS ONE, 12(8), e0182652. doi:10.1371/journal.pone.0182652 es_ES
dc.description.references Liu, W., Li, M., & Yi, L. (2016). Identifying children with autism spectrum disorder based on their face processing abnormality: A machine learning framework. Autism Research, 9(8), 888-898. doi:10.1002/aur.1615 es_ES
dc.description.references Lord, C., Risi, S., DiLavore, P. S., Shulman, C., Thurm, A., & Pickles, A. (2006). Autism From 2 to 9 Years of Age. Archives of General Psychiatry, 63(6), 694. doi:10.1001/archpsyc.63.6.694 es_ES
dc.description.references Lord, C., Rutter, M., & Le Couteur, A. (1994). Autism Diagnostic Interview-Revised: A revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders. Journal of Autism and Developmental Disorders, 24(5), 659-685. doi:10.1007/bf02172145 es_ES
dc.description.references Loth, E., Spooren, W., Ham, L. M., Isaac, M. B., Auriche-Benichou, C., Banaschewski, T., … Murphy, D. G. M. (2015). Identification and validation of biomarkers for autism spectrum disorders. Nature Reviews Drug Discovery, 15(1), 70-70. doi:10.1038/nrd.2015.7 es_ES
dc.description.references Louwerse, A., van der Geest, J. N., Tulen, J. H. M., van der Ende, J., Van Gool, A. R., Verhulst, F. C., & Greaves-Lord, K. (2013). Effects of eye gaze directions of facial images on looking behaviour and autonomic responses in adolescents with autism spectrum disorders. Research in Autism Spectrum Disorders, 7(9), 1043-1053. doi:10.1016/j.rasd.2013.04.013 es_ES
dc.description.references Lydon, S., Healy, O., Reed, P., Mulhern, T., Hughes, B. M., & Goodwin, M. S. (2014). A systematic review of physiological reactivity to stimuli in autism. Developmental Neurorehabilitation, 19(6), 335-355. doi:10.3109/17518423.2014.971975 es_ES
dc.description.references McCarthy, C., Pradhan, N., Redpath, C., & Adler, A. (2016). Validation of the Empatica E4 wristband. 2016 IEEE EMBS International Student Conference (ISC). doi:10.1109/embsisc.2016.7508621 es_ES
dc.description.references McCormick, C., Hessl, D., Macari, S. L., Ozonoff, S., Green, C., & Rogers, S. J. (2014). Electrodermal and Behavioral Responses of Children With Autism Spectrum Disorders to Sensory and Repetitive Stimuli. Autism Research, 7(4), 468-480. doi:10.1002/aur.1382 es_ES
dc.description.references Miller, L. J., Anzalone, M. E., Lane, S. J., Cermak, S. A., & Osten, E. T. (2007). Concept Evolution in Sensory Integration: A Proposed Nosology for Diagnosis. American Journal of Occupational Therapy, 61(2), 135-140. doi:10.5014/ajot.61.2.135 es_ES
dc.description.references Montague, P. R., Dolan, R. J., Friston, K. J., & Dayan, P. (2012). Computational psychiatry. Trends in Cognitive Sciences, 16(1), 72-80. doi:10.1016/j.tics.2011.11.018 es_ES
dc.description.references Möricke, E., Buitelaar, J. K., & Rommelse, N. N. J. (2015). Do We Need Multiple Informants When Assessing Autistic Traits? The Degree of Report Bias on Offspring, Self, and Spouse Ratings. Journal of Autism and Developmental Disorders, 46(1), 164-175. doi:10.1007/s10803-015-2562-y es_ES
dc.description.references Murphy, D., & Spooren, W. (2012). EU-AIMS: a boost to autism research. Nature Reviews Drug Discovery, 11(11), 815-816. doi:10.1038/nrd3881 es_ES
dc.description.references Nakai, Y., Takiguchi, T., Matsui, G., Yamaoka, N., & Takada, S. (2017). Detecting Abnormal Word Utterances in Children With Autism Spectrum Disorders. Perceptual and Motor Skills, 124(5), 961-973. doi:10.1177/0031512517716855 es_ES
dc.description.references Nikula, R. (1991). Psychological Correlates of Nonspecific Skin Conductance Responses. Psychophysiology, 28(1), 86-90. doi:10.1111/j.1469-8986.1991.tb03392.x es_ES
dc.description.references Nosek, B. A., Hawkins, C. B., & Frazier, R. S. (2011). Implicit social cognition: from measures to mechanisms. Trends in Cognitive Sciences, 15(4), 152-159. doi:10.1016/j.tics.2011.01.005 es_ES
dc.description.references Palkovitz, R. J., & Wiesenfeld, A. R. (1980). Differential autonomic responses of autistic and normal children. Journal of Autism and Developmental Disorders, 10(3), 347-360. doi:10.1007/bf02408294 es_ES
dc.description.references Parsons, S. (2016). Authenticity in Virtual Reality for assessment and intervention in autism: A conceptual review. Educational Research Review, 19, 138-157. doi:10.1016/j.edurev.2016.08.001 es_ES
dc.description.references Parsons, T. D. (2016). Telemedicine, Mobile, and Internet-Based Neurocognitive Assessment. Clinical Neuropsychology and Technology, 99-111. doi:10.1007/978-3-319-31075-6_6 es_ES
dc.description.references Paulhus, D. L. (1991). Measurement and Control of Response Bias. Measures of Personality and Social Psychological Attitudes, 17-59. doi:10.1016/b978-0-12-590241-0.50006-x es_ES
dc.description.references Picard, R. W., Fedor, S., & Ayzenberg, Y. (2015). Multiple Arousal Theory and Daily-Life Electrodermal Activity Asymmetry. Emotion Review, 8(1), 62-75. doi:10.1177/1754073914565517 es_ES
dc.description.references Reaven, J. A., Hepburn, S. L., & Ross, R. G. (2008). Use of the ADOS and ADI-R in Children with Psychosis: Importance of Clinical Judgment. Clinical Child Psychology and Psychiatry, 13(1), 81-94. doi:10.1177/1359104507086343 es_ES
dc.description.references Redish, A. D., & Gordon, J. A. (Eds.). (2016). Computational Psychiatry. doi:10.7551/mitpress/9780262035422.001.0001 es_ES
dc.description.references Riby, D. M., Whittle, L., & Doherty-Sneddon, G. (2012). Physiological reactivity to faces via live and video-mediated communication in typical and atypical development. Journal of Clinical and Experimental Neuropsychology, 34(4), 385-395. doi:10.1080/13803395.2011.645019 es_ES
dc.description.references Rogers, S. J., & Ozonoff, S. (2005). Annotation: What do we know about sensory dysfunction in autism? A critical review of the empirical evidence. Journal of Child Psychology and Psychiatry, 46(12), 1255-1268. doi:10.1111/j.1469-7610.2005.01431.x es_ES
dc.description.references Schmidt, L., Kirchner, J., Strunz, S., Broźus, J., Ritter, K., Roepke, S., & Dziobek, I. (2015). Psychosocial Functioning and Life Satisfaction in Adults With Autism Spectrum Disorder Without Intellectual Impairment. Journal of Clinical Psychology, 71(12), 1259-1268. doi:10.1002/jclp.22225 es_ES
dc.description.references Schoen, S. A. (2009). Physiological and behavioral differences in sensory processing: a comparison of children with Autism Spectrum Disorder and Sensory Processing Disorder. Frontiers in Integrative Neuroscience, 3. doi:10.3389/neuro.07.029.2009 es_ES
dc.description.references Schölkopf, B., Smola, A. J., Williamson, R. C., & Bartlett, P. L. (2000). New Support Vector Algorithms. Neural Computation, 12(5), 1207-1245. doi:10.1162/089976600300015565 es_ES
dc.description.references Slater, M. (2009). Place illusion and plausibility can lead to realistic behaviour in immersive virtual environments. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1535), 3549-3557. doi:10.1098/rstb.2009.0138 es_ES
dc.description.references Slater, M., & Wilbur, S. (1997). A Framework for Immersive Virtual Environments (FIVE): Speculations on the Role of Presence in Virtual Environments. Presence: Teleoperators and Virtual Environments, 6(6), 603-616. doi:10.1162/pres.1997.6.6.603 es_ES
dc.description.references Stevens, S., & Gruzelier, J. (1984). Electrodermal activity to auditory stimuli in autistic, retarded, and normal children. Journal of Autism and Developmental Disorders, 14(3), 245-260. doi:10.1007/bf02409577 es_ES
dc.description.references Tomchek, S. D., & Dunn, W. (2007). Sensory Processing in Children With and Without Autism: A Comparative Study Using the Short Sensory Profile. American Journal of Occupational Therapy, 61(2), 190-200. doi:10.5014/ajot.61.2.190 es_ES
dc.description.references Tomchek, S. D., Huebner, R. A., & Dunn, W. (2014). Patterns of sensory processing in children with an autism spectrum disorder. Research in Autism Spectrum Disorders, 8(9), 1214-1224. doi:10.1016/j.rasd.2014.06.006 es_ES
dc.description.references Van Engeland, H., Roelofs, J. W., Verbaten, M. N., & Slangen, J. L. (1991). Abnormal electrodermal reactivity to novel visual stimuli in autistic children. Psychiatry Research, 38(1), 27-38. doi:10.1016/0165-1781(91)90050-y es_ES
dc.description.references Van Hecke, A. V., Stevens, S., Carson, A. M., Karst, J. S., Dolan, B., Schohl, K., … Brockman, S. (2013). Measuring the Plasticity of Social Approach: A Randomized Controlled Trial of the Effects of the PEERS Intervention on EEG Asymmetry in Adolescents with Autism Spectrum Disorders. Journal of Autism and Developmental Disorders, 45(2), 316-335. doi:10.1007/s10803-013-1883-y es_ES
dc.description.references Volkmar, F. R., State, M., & Klin, A. (2009). Autism and autism spectrum disorders: diagnostic issues for the coming decade. Journal of Child Psychology and Psychiatry, 50(1-2), 108-115. doi:10.1111/j.1469-7610.2008.02010.x es_ES
dc.description.references Wang, X.-J., & Krystal, J. H. (2014). Computational Psychiatry. Neuron, 84(3), 638-654. doi:10.1016/j.neuron.2014.10.018 es_ES
dc.description.references Wang, Y., Hensley, M. K., Tasman, A., Sears, L., Casanova, M. F., & Sokhadze, E. M. (2015). Heart Rate Variability and Skin Conductance During Repetitive TMS Course in Children with Autism. Applied Psychophysiology and Biofeedback, 41(1), 47-60. doi:10.1007/s10484-015-9311-z es_ES
dc.description.references White, M. P., Yeo, N., Vassiljev, P., Lundstedt, R., Wallergård, M., Albin, M., & Lõhmus, M. (2018). A prescription for “nature” – the potential of using virtual nature in therapeutics. Neuropsychiatric Disease and Treatment, Volume 14, 3001-3013. doi:10.2147/ndt.s179038 es_ES
dc.description.references White, S. W., Mazefsky, C. A., Dichter, G. S., Chiu, P. H., Richey, J. A., & Ollendick, T. H. (2014). Social‐cognitive, physiological, and neural mechanisms underlying emotion regulation impairments: understanding anxiety in autism spectrum disorder. International Journal of Developmental Neuroscience, 39(1), 22-36. doi:10.1016/j.ijdevneu.2014.05.012 es_ES
dc.description.references Wing, L., Gould, J., & Gillberg, C. (2011). Autism spectrum disorders in the DSM-V: Better or worse than the DSM-IV? Research in Developmental Disabilities, 32(2), 768-773. doi:10.1016/j.ridd.2010.11.003 es_ES
dc.description.references Yan, K., & Zhang, D. (2015). Feature selection and analysis on correlated gas sensor data with recursive feature elimination. Sensors and Actuators B: Chemical, 212, 353-363. doi:10.1016/j.snb.2015.02.025 es_ES
dc.description.references Zahn, T. P., Rumsey, J. M., & Van Kammen, D. P. (1987). Autonomic nervous system activity in autistic, schizophrenic, and normal men: Effects of stimulus significance. Journal of Abnormal Psychology, 96(2), 135-144. doi:10.1037/0021-843x.96.2.135 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem