Mostrar el registro sencillo del ítem
dc.contributor.author | Alcañiz Raya, Mariano Luis | es_ES |
dc.contributor.author | CHICCHI-GIGLIOLI, IRENE ALICE | es_ES |
dc.contributor.author | Marín-Morales, Javier | es_ES |
dc.contributor.author | Higuera-Trujillo, Juan Luis | es_ES |
dc.contributor.author | Olmos-Raya, Elena | es_ES |
dc.contributor.author | Minissi, Maria Eleonora | es_ES |
dc.contributor.author | Teruel García, Gonzalo | es_ES |
dc.contributor.author | Sirera, Marian | es_ES |
dc.contributor.author | Abad, Luis | es_ES |
dc.date.accessioned | 2021-01-19T04:31:47Z | |
dc.date.available | 2021-01-19T04:31:47Z | |
dc.date.issued | 2020-04-03 | es_ES |
dc.identifier.issn | 1662-5161 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/159335 | |
dc.description.abstract | [EN] Objective: Sensory processing is the ability to capture, elaborate, and integrate information through the five senses and is impaired in over 90% of children with autism spectrum disorder (ASD). The ASD population shows hyper¿hypo sensitiveness to sensory stimuli that can generate alteration in information processing, affecting cognitive and social responses to daily life situations. Structured and semi-structured interviews are generally used for ASD assessment, and the evaluation relies on the examiner¿s subjectivity and expertise, which can lead to misleading outcomes. Recently, there has been a growing need for more objective, reliable, and valid diagnostic measures, such as biomarkers, to distinguish typical from atypical functioning and to reliably track the progression of the illness, helping to diagnose ASD. Implicit measures and ecological valid settings have been showing high accuracy on predicting outcomes and correctly classifying populations in categories. Methods: Two experiments investigated whether sensory processing can discriminate between ASD and typical development (TD) populations using electrodermal activity (EDA) in two multimodal virtual environments (VE): forest VE and city VE. In the first experiment, 24 children with ASD diagnosis and 30 TDs participated in both virtual experiences, and changes in EDA have been recorded before and during the presentation of visual, auditive, and olfactive stimuli. In the second experiment, 40 children have been added to test the model of experiment 1. Results: The first exploratory results on EDA comparison models showed that the integration of visual, auditive, and olfactive stimuli in the forest environment provided higher accuracy (90.3%) on sensory dysfunction discrimination than specific stimuli. In the second experiment, 92 subjects experienced the forest VE, and results on 72 subjects showed that stimuli integration achieved an accuracy of 83.33%. The final confirmatory test set (n = 20) achieved 85% accuracy, simulating a real application of the models. Further relevant result concerns the visual stimuli condition in the first experiment, which achieved 84.6% of accuracy in recognizing ASD sensory dysfunction. Conclusion: According to our studies¿ results, implicit measures, such as EDA, and ecological valid settings can represent valid quantitative methods, along with traditional assessment measures, to classify ASD population, enhancing knowledge on the development of relevant specific treatments. | es_ES |
dc.description.sponsorship | This work was supported by the Spanish Ministry of Economy, Industry, and Competitiveness-funded project Immersive Virtual Environment for the Evaluation and Training of Children with Autism Spectrum Disorder: T Room (IDI-20170912) and by the Generalitat Valenciana-funded project REBRAND (PROMETEU/2019/105). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Frontiers Media SA | es_ES |
dc.relation.ispartof | Frontiers in Human Neuroscience | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Autism spectrum disorder | es_ES |
dc.subject | Sensory dysfunction | es_ES |
dc.subject | Virtual reality | es_ES |
dc.subject | Electrodermal activity | es_ES |
dc.subject | Assessment | es_ES |
dc.subject.classification | ORGANIZACION DE EMPRESAS | es_ES |
dc.subject.classification | EXPRESION GRAFICA EN LA INGENIERIA | es_ES |
dc.title | Application of Supervised Machine Learning for Behavioral Biomarkers of Autism Spectrum Disorder Based on Electrodermal Activity and Virtual Reality | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3389/fnhum.2020.00090 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//IDI-20170912/ES/Virtual Immersive Environment for the Assessment and Training of Autism Spectrum Disorder children (T-ROOM)/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEO%2F2019%2F105/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Gráfica - Departament d'Enginyeria Gràfica | es_ES |
dc.description.bibliographicCitation | Alcañiz Raya, ML.; Chicchi-Giglioli, IA.; Marín-Morales, J.; Higuera-Trujillo, JL.; Olmos-Raya, E.; Minissi, ME.; Teruel García, G.... (2020). Application of Supervised Machine Learning for Behavioral Biomarkers of Autism Spectrum Disorder Based on Electrodermal Activity and Virtual Reality. Frontiers in Human Neuroscience. 14:1-16. https://doi.org/10.3389/fnhum.2020.00090 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3389/fnhum.2020.00090 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 16 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 14 | es_ES |
dc.identifier.pmid | 32317949 | es_ES |
dc.identifier.pmcid | PMC7146061 | es_ES |
dc.relation.pasarela | S\406952 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Ministerio de Economía, Industria y Competitividad | es_ES |
dc.description.references | Allen, R., Davis, R., & Hill, E. (2012). The Effects of Autism and Alexithymia on Physiological and Verbal Responsiveness to Music. Journal of Autism and Developmental Disorders, 43(2), 432-444. doi:10.1007/s10803-012-1587-8 | es_ES |
dc.description.references | Anagnostou, E., Zwaigenbaum, L., Szatmari, P., Fombonne, E., Fernandez, B. A., Woodbury-Smith, M., … Scherer, S. W. (2014). Autism spectrum disorder: advances in evidence-based practice. Canadian Medical Association Journal, 186(7), 509-519. doi:10.1503/cmaj.121756 | es_ES |
dc.description.references | Ashwin, C., Chapman, E., Howells, J., Rhydderch, D., Walker, I., & Baron-Cohen, S. (2014). Enhanced olfactory sensitivity in autism spectrum conditions. Molecular Autism, 5(1), 53. doi:10.1186/2040-2392-5-53 | es_ES |
dc.description.references | Baron-Cohen, S. (1990). Autism: A Specific Cognitive Disorder of & lsquo;Mind-Blindness’. International Review of Psychiatry, 2(1), 81-90. doi:10.3109/09540269009028274 | es_ES |
dc.description.references | Baron-Cohen, S., Ashwin, E., Ashwin, C., Tavassoli, T., & Chakrabarti, B. (2009). Talent in autism: hyper-systemizing, hyper-attention to detail and sensory hypersensitivity. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1522), 1377-1383. doi:10.1098/rstb.2008.0337 | es_ES |
dc.description.references | Barry, R. J., & James, A. L. (1988). Coding of stimulus parameters in autistic, retarded, and normal children: evidence for a two-factor theory of autism. International Journal of Psychophysiology, 6(2), 139-149. doi:10.1016/0167-8760(88)90045-1 | es_ES |
dc.description.references | Bekele, E., Crittendon, J., Zheng, Z., Swanson, A., Weitlauf, A., Warren, Z., & Sarkar, N. (2014). Assessing the Utility of a Virtual Environment for Enhancing Facial Affect Recognition in Adolescents with Autism. Journal of Autism and Developmental Disorders, 44(7), 1641-1650. doi:10.1007/s10803-014-2035-8 | es_ES |
dc.description.references | Benedek, M., & Kaernbach, C. (2010). A continuous measure of phasic electrodermal activity. Journal of Neuroscience Methods, 190(1), 80-91. doi:10.1016/j.jneumeth.2010.04.028 | es_ES |
dc.description.references | Blascovich, J., Loomis, J., Beall, A. C., Swinth, K. R., Hoyt, C. L., & Bailenson, J. N. (2002). TARGET ARTICLE: Immersive Virtual Environment Technology as a Methodological Tool for Social Psychology. Psychological Inquiry, 13(2), 103-124. doi:10.1207/s15327965pli1302_01 | es_ES |
dc.description.references | Boucsein, W. (2012). Electrodermal Activity. doi:10.1007/978-1-4614-1126-0 | es_ES |
dc.description.references | Brunswik, E. (1955). Representative design and probabilistic theory in a functional psychology. Psychological Review, 62(3), 193-217. doi:10.1037/h0047470 | es_ES |
dc.description.references | BUJNAKOVA, I., ONDREJKA, I., MESTANIK, M., VISNOVCOVA, Z., MESTANIKOVA, A., HRTANEK, I., … TONHAJZEROVA, I. (2016). Autism Spectrum Disorder Is Associated With Autonomic Underarousal. Physiological Research, S673-S682. doi:10.33549/physiolres.933528 | es_ES |
dc.description.references | Chang, C.-C., & Lin, C.-J. (2011). LIBSVM. ACM Transactions on Intelligent Systems and Technology, 2(3), 1-27. doi:10.1145/1961189.1961199 | es_ES |
dc.description.references | Chang, M. C., Parham, L. D., Blanche, E. I., Schell, A., Chou, C.-P., Dawson, M., & Clark, F. (2012). Autonomic and Behavioral Responses of Children With Autism to Auditory Stimuli. American Journal of Occupational Therapy, 66(5), 567-576. doi:10.5014/ajot.2012.004242 | es_ES |
dc.description.references | CHAYTOR, N., SCHMITTEREDGECOMBE, M., & BURR, R. (2006). Improving the ecological validity of executive functioning assessment. Archives of Clinical Neuropsychology, 21(3), 217-227. doi:10.1016/j.acn.2005.12.002 | es_ES |
dc.description.references | Chen, C. P., Keown, C. L., Jahedi, A., Nair, A., Pflieger, M. E., Bailey, B. A., & Müller, R.-A. (2015). Diagnostic classification of intrinsic functional connectivity highlights somatosensory, default mode, and visual regions in autism. NeuroImage: Clinical, 8, 238-245. doi:10.1016/j.nicl.2015.04.002 | es_ES |
dc.description.references | Chita-Tegmark, M. (2016). Attention Allocation in ASD: a Review and Meta-analysis of Eye-Tracking Studies. Review Journal of Autism and Developmental Disorders, 3(3), 209-223. doi:10.1007/s40489-016-0077-x | es_ES |
dc.description.references | Fenwick, T. (2014). Social Media and Medical Professionalism. Academic Medicine, 89(10), 1331-1334. doi:10.1097/acm.0000000000000436 | es_ES |
dc.description.references | Delobel-Ayoub, M., Ehlinger, V., Klapouszczak, D., Maffre, T., Raynaud, J.-P., Delpierre, C., & Arnaud, C. (2015). Socioeconomic Disparities and Prevalence of Autism Spectrum Disorders and Intellectual Disability. PLOS ONE, 10(11), e0141964. doi:10.1371/journal.pone.0141964 | es_ES |
dc.description.references | Di Martino, A., Yan, C.-G., Li, Q., Denio, E., Castellanos, F. X., Alaerts, K., … Milham, M. P. (2013). The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism. Molecular Psychiatry, 19(6), 659-667. doi:10.1038/mp.2013.78 | es_ES |
dc.description.references | Dudova, I., Vodicka, J., Havlovicova, M., Sedlacek, Z., Urbanek, T., & Hrdlicka, M. (2011). Odor detection threshold, but not odor identification, is impaired in children with autism. European Child & Adolescent Psychiatry, 20(7), 333-340. doi:10.1007/s00787-011-0177-1 | es_ES |
dc.description.references | Fagius, J., & Wallin, B. G. (1980). Sympathetic reflex latencies and conduction velocities in normal man. Journal of the Neurological Sciences, 47(3), 433-448. doi:10.1016/0022-510x(80)90098-2 | es_ES |
dc.description.references | Fenning, R. M., Baker, J. K., Baucom, B. R., Erath, S. A., Howland, M. A., & Moffitt, J. (2017). Electrodermal Variability and Symptom Severity in Children with Autism Spectrum Disorder. Journal of Autism and Developmental Disorders, 47(4), 1062-1072. doi:10.1007/s10803-016-3021-0 | es_ES |
dc.description.references | Forscher, P. S., Lai, C. K., Axt, J. R., Ebersole, C. R., Herman, M., Devine, P. G., & Nosek, B. A. (2019). A meta-analysis of procedures to change implicit measures. Journal of Personality and Social Psychology, 117(3), 522-559. doi:10.1037/pspa0000160 | es_ES |
dc.description.references | Francis, K. (2007). Autism interventions: a critical update. Developmental Medicine & Child Neurology, 47(7), 493-499. doi:10.1111/j.1469-8749.2005.tb01178.x | es_ES |
dc.description.references | Friston, K. J., Stephan, K. E., Montague, R., & Dolan, R. J. (2014). Computational psychiatry: the brain as a phantastic organ. The Lancet Psychiatry, 1(2), 148-158. doi:10.1016/s2215-0366(14)70275-5 | es_ES |
dc.description.references | Gillberg, C., & Rasmussen, P. (1994). Brief report: Four case histories and a literature review of williams syndrome and autistic behavior. Journal of Autism and Developmental Disorders, 24(3), 381-393. doi:10.1007/bf02172235 | es_ES |
dc.description.references | Hirstein, W., Iversen, P., & Ramachandran, V. S. (2001). Autonomic responses of autistic children to people and objects. Proceedings of the Royal Society of London. Series B: Biological Sciences, 268(1479), 1883-1888. doi:10.1098/rspb.2001.1724 | es_ES |
dc.description.references | Hubert, B. E., Wicker, B., Monfardini, E., & Deruelle, C. (2009). Electrodermal reactivity to emotion processing in adults with autistic spectrum disorders. Autism, 13(1), 9-19. doi:10.1177/1362361308091649 | es_ES |
dc.description.references | Hyde, K. K., Novack, M. N., LaHaye, N., Parlett-Pelleriti, C., Anden, R., Dixon, D. R., & Linstead, E. (2019). Applications of Supervised Machine Learning in Autism Spectrum Disorder Research: a Review. Review Journal of Autism and Developmental Disorders, 6(2), 128-146. doi:10.1007/s40489-019-00158-x | es_ES |
dc.description.references | JOSEPH, R. M., EHRMAN, K., MCNALLY, R., & KEEHN, B. (2008). Affective response to eye contact and face recognition ability in children with ASD. Journal of the International Neuropsychological Society, 14(6), 947-955. doi:10.1017/s1355617708081344 | es_ES |
dc.description.references | Kandalaft, M. R., Didehbani, N., Krawczyk, D. C., Allen, T. T., & Chapman, S. B. (2012). Virtual Reality Social Cognition Training for Young Adults with High-Functioning Autism. Journal of Autism and Developmental Disorders, 43(1), 34-44. doi:10.1007/s10803-012-1544-6 | es_ES |
dc.description.references | Kreibig, S. D. (2010). Autonomic nervous system activity in emotion: A review. Biological Psychology, 84(3), 394-421. doi:10.1016/j.biopsycho.2010.03.010 | es_ES |
dc.description.references | Kylliäinen, A., & Hietanen, J. K. (2006). Skin Conductance Responses to Another Person’s Gaze in Children with Autism. Journal of Autism and Developmental Disorders, 36(4), 517-525. doi:10.1007/s10803-006-0091-4 | es_ES |
dc.description.references | Kylliäinen, A., Wallace, S., Coutanche, M. N., Leppänen, J. M., Cusack, J., Bailey, A. J., & Hietanen, J. K. (2012). Affective-motivational brain responses to direct gaze in children with autism spectrum disorder. Journal of Child Psychology and Psychiatry, 53(7), 790-797. doi:10.1111/j.1469-7610.2011.02522.x | es_ES |
dc.description.references | Ledoux, K., Coderre, E., Bosley, L., Buz, E., Gangopadhyay, I., & Gordon, B. (2015). The concurrent use of three implicit measures (eye movements, pupillometry, and event-related potentials) to assess receptive vocabulary knowledge in normal adults. Behavior Research Methods, 48(1), 285-305. doi:10.3758/s13428-015-0571-6 | es_ES |
dc.description.references | Leekam, S. R., Nieto, C., Libby, S. J., Wing, L., & Gould, J. (2006). Describing the Sensory Abnormalities of Children and Adults with Autism. Journal of Autism and Developmental Disorders, 37(5), 894-910. doi:10.1007/s10803-006-0218-7 | es_ES |
dc.description.references | Levy, A., & Perry, A. (2011). Outcomes in adolescents and adults with autism: A review of the literature. Research in Autism Spectrum Disorders, 5(4), 1271-1282. doi:10.1016/j.rasd.2011.01.023 | es_ES |
dc.description.references | Li, B., Sharma, A., Meng, J., Purushwalkam, S., & Gowen, E. (2017). Applying machine learning to identify autistic adults using imitation: An exploratory study. PLOS ONE, 12(8), e0182652. doi:10.1371/journal.pone.0182652 | es_ES |
dc.description.references | Liu, W., Li, M., & Yi, L. (2016). Identifying children with autism spectrum disorder based on their face processing abnormality: A machine learning framework. Autism Research, 9(8), 888-898. doi:10.1002/aur.1615 | es_ES |
dc.description.references | Lord, C., Risi, S., DiLavore, P. S., Shulman, C., Thurm, A., & Pickles, A. (2006). Autism From 2 to 9 Years of Age. Archives of General Psychiatry, 63(6), 694. doi:10.1001/archpsyc.63.6.694 | es_ES |
dc.description.references | Lord, C., Rutter, M., & Le Couteur, A. (1994). Autism Diagnostic Interview-Revised: A revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders. Journal of Autism and Developmental Disorders, 24(5), 659-685. doi:10.1007/bf02172145 | es_ES |
dc.description.references | Loth, E., Spooren, W., Ham, L. M., Isaac, M. B., Auriche-Benichou, C., Banaschewski, T., … Murphy, D. G. M. (2015). Identification and validation of biomarkers for autism spectrum disorders. Nature Reviews Drug Discovery, 15(1), 70-70. doi:10.1038/nrd.2015.7 | es_ES |
dc.description.references | Louwerse, A., van der Geest, J. N., Tulen, J. H. M., van der Ende, J., Van Gool, A. R., Verhulst, F. C., & Greaves-Lord, K. (2013). Effects of eye gaze directions of facial images on looking behaviour and autonomic responses in adolescents with autism spectrum disorders. Research in Autism Spectrum Disorders, 7(9), 1043-1053. doi:10.1016/j.rasd.2013.04.013 | es_ES |
dc.description.references | Lydon, S., Healy, O., Reed, P., Mulhern, T., Hughes, B. M., & Goodwin, M. S. (2014). A systematic review of physiological reactivity to stimuli in autism. Developmental Neurorehabilitation, 19(6), 335-355. doi:10.3109/17518423.2014.971975 | es_ES |
dc.description.references | McCarthy, C., Pradhan, N., Redpath, C., & Adler, A. (2016). Validation of the Empatica E4 wristband. 2016 IEEE EMBS International Student Conference (ISC). doi:10.1109/embsisc.2016.7508621 | es_ES |
dc.description.references | McCormick, C., Hessl, D., Macari, S. L., Ozonoff, S., Green, C., & Rogers, S. J. (2014). Electrodermal and Behavioral Responses of Children With Autism Spectrum Disorders to Sensory and Repetitive Stimuli. Autism Research, 7(4), 468-480. doi:10.1002/aur.1382 | es_ES |
dc.description.references | Miller, L. J., Anzalone, M. E., Lane, S. J., Cermak, S. A., & Osten, E. T. (2007). Concept Evolution in Sensory Integration: A Proposed Nosology for Diagnosis. American Journal of Occupational Therapy, 61(2), 135-140. doi:10.5014/ajot.61.2.135 | es_ES |
dc.description.references | Montague, P. R., Dolan, R. J., Friston, K. J., & Dayan, P. (2012). Computational psychiatry. Trends in Cognitive Sciences, 16(1), 72-80. doi:10.1016/j.tics.2011.11.018 | es_ES |
dc.description.references | Möricke, E., Buitelaar, J. K., & Rommelse, N. N. J. (2015). Do We Need Multiple Informants When Assessing Autistic Traits? The Degree of Report Bias on Offspring, Self, and Spouse Ratings. Journal of Autism and Developmental Disorders, 46(1), 164-175. doi:10.1007/s10803-015-2562-y | es_ES |
dc.description.references | Murphy, D., & Spooren, W. (2012). EU-AIMS: a boost to autism research. Nature Reviews Drug Discovery, 11(11), 815-816. doi:10.1038/nrd3881 | es_ES |
dc.description.references | Nakai, Y., Takiguchi, T., Matsui, G., Yamaoka, N., & Takada, S. (2017). Detecting Abnormal Word Utterances in Children With Autism Spectrum Disorders. Perceptual and Motor Skills, 124(5), 961-973. doi:10.1177/0031512517716855 | es_ES |
dc.description.references | Nikula, R. (1991). Psychological Correlates of Nonspecific Skin Conductance Responses. Psychophysiology, 28(1), 86-90. doi:10.1111/j.1469-8986.1991.tb03392.x | es_ES |
dc.description.references | Nosek, B. A., Hawkins, C. B., & Frazier, R. S. (2011). Implicit social cognition: from measures to mechanisms. Trends in Cognitive Sciences, 15(4), 152-159. doi:10.1016/j.tics.2011.01.005 | es_ES |
dc.description.references | Palkovitz, R. J., & Wiesenfeld, A. R. (1980). Differential autonomic responses of autistic and normal children. Journal of Autism and Developmental Disorders, 10(3), 347-360. doi:10.1007/bf02408294 | es_ES |
dc.description.references | Parsons, S. (2016). Authenticity in Virtual Reality for assessment and intervention in autism: A conceptual review. Educational Research Review, 19, 138-157. doi:10.1016/j.edurev.2016.08.001 | es_ES |
dc.description.references | Parsons, T. D. (2016). Telemedicine, Mobile, and Internet-Based Neurocognitive Assessment. Clinical Neuropsychology and Technology, 99-111. doi:10.1007/978-3-319-31075-6_6 | es_ES |
dc.description.references | Paulhus, D. L. (1991). Measurement and Control of Response Bias. Measures of Personality and Social Psychological Attitudes, 17-59. doi:10.1016/b978-0-12-590241-0.50006-x | es_ES |
dc.description.references | Picard, R. W., Fedor, S., & Ayzenberg, Y. (2015). Multiple Arousal Theory and Daily-Life Electrodermal Activity Asymmetry. Emotion Review, 8(1), 62-75. doi:10.1177/1754073914565517 | es_ES |
dc.description.references | Reaven, J. A., Hepburn, S. L., & Ross, R. G. (2008). Use of the ADOS and ADI-R in Children with Psychosis: Importance of Clinical Judgment. Clinical Child Psychology and Psychiatry, 13(1), 81-94. doi:10.1177/1359104507086343 | es_ES |
dc.description.references | Redish, A. D., & Gordon, J. A. (Eds.). (2016). Computational Psychiatry. doi:10.7551/mitpress/9780262035422.001.0001 | es_ES |
dc.description.references | Riby, D. M., Whittle, L., & Doherty-Sneddon, G. (2012). Physiological reactivity to faces via live and video-mediated communication in typical and atypical development. Journal of Clinical and Experimental Neuropsychology, 34(4), 385-395. doi:10.1080/13803395.2011.645019 | es_ES |
dc.description.references | Rogers, S. J., & Ozonoff, S. (2005). Annotation: What do we know about sensory dysfunction in autism? A critical review of the empirical evidence. Journal of Child Psychology and Psychiatry, 46(12), 1255-1268. doi:10.1111/j.1469-7610.2005.01431.x | es_ES |
dc.description.references | Schmidt, L., Kirchner, J., Strunz, S., Broźus, J., Ritter, K., Roepke, S., & Dziobek, I. (2015). Psychosocial Functioning and Life Satisfaction in Adults With Autism Spectrum Disorder Without Intellectual Impairment. Journal of Clinical Psychology, 71(12), 1259-1268. doi:10.1002/jclp.22225 | es_ES |
dc.description.references | Schoen, S. A. (2009). Physiological and behavioral differences in sensory processing: a comparison of children with Autism Spectrum Disorder and Sensory Processing Disorder. Frontiers in Integrative Neuroscience, 3. doi:10.3389/neuro.07.029.2009 | es_ES |
dc.description.references | Schölkopf, B., Smola, A. J., Williamson, R. C., & Bartlett, P. L. (2000). New Support Vector Algorithms. Neural Computation, 12(5), 1207-1245. doi:10.1162/089976600300015565 | es_ES |
dc.description.references | Slater, M. (2009). Place illusion and plausibility can lead to realistic behaviour in immersive virtual environments. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1535), 3549-3557. doi:10.1098/rstb.2009.0138 | es_ES |
dc.description.references | Slater, M., & Wilbur, S. (1997). A Framework for Immersive Virtual Environments (FIVE): Speculations on the Role of Presence in Virtual Environments. Presence: Teleoperators and Virtual Environments, 6(6), 603-616. doi:10.1162/pres.1997.6.6.603 | es_ES |
dc.description.references | Stevens, S., & Gruzelier, J. (1984). Electrodermal activity to auditory stimuli in autistic, retarded, and normal children. Journal of Autism and Developmental Disorders, 14(3), 245-260. doi:10.1007/bf02409577 | es_ES |
dc.description.references | Tomchek, S. D., & Dunn, W. (2007). Sensory Processing in Children With and Without Autism: A Comparative Study Using the Short Sensory Profile. American Journal of Occupational Therapy, 61(2), 190-200. doi:10.5014/ajot.61.2.190 | es_ES |
dc.description.references | Tomchek, S. D., Huebner, R. A., & Dunn, W. (2014). Patterns of sensory processing in children with an autism spectrum disorder. Research in Autism Spectrum Disorders, 8(9), 1214-1224. doi:10.1016/j.rasd.2014.06.006 | es_ES |
dc.description.references | Van Engeland, H., Roelofs, J. W., Verbaten, M. N., & Slangen, J. L. (1991). Abnormal electrodermal reactivity to novel visual stimuli in autistic children. Psychiatry Research, 38(1), 27-38. doi:10.1016/0165-1781(91)90050-y | es_ES |
dc.description.references | Van Hecke, A. V., Stevens, S., Carson, A. M., Karst, J. S., Dolan, B., Schohl, K., … Brockman, S. (2013). Measuring the Plasticity of Social Approach: A Randomized Controlled Trial of the Effects of the PEERS Intervention on EEG Asymmetry in Adolescents with Autism Spectrum Disorders. Journal of Autism and Developmental Disorders, 45(2), 316-335. doi:10.1007/s10803-013-1883-y | es_ES |
dc.description.references | Volkmar, F. R., State, M., & Klin, A. (2009). Autism and autism spectrum disorders: diagnostic issues for the coming decade. Journal of Child Psychology and Psychiatry, 50(1-2), 108-115. doi:10.1111/j.1469-7610.2008.02010.x | es_ES |
dc.description.references | Wang, X.-J., & Krystal, J. H. (2014). Computational Psychiatry. Neuron, 84(3), 638-654. doi:10.1016/j.neuron.2014.10.018 | es_ES |
dc.description.references | Wang, Y., Hensley, M. K., Tasman, A., Sears, L., Casanova, M. F., & Sokhadze, E. M. (2015). Heart Rate Variability and Skin Conductance During Repetitive TMS Course in Children with Autism. Applied Psychophysiology and Biofeedback, 41(1), 47-60. doi:10.1007/s10484-015-9311-z | es_ES |
dc.description.references | White, M. P., Yeo, N., Vassiljev, P., Lundstedt, R., Wallergård, M., Albin, M., & Lõhmus, M. (2018). A prescription for “nature” – the potential of using virtual nature in therapeutics. Neuropsychiatric Disease and Treatment, Volume 14, 3001-3013. doi:10.2147/ndt.s179038 | es_ES |
dc.description.references | White, S. W., Mazefsky, C. A., Dichter, G. S., Chiu, P. H., Richey, J. A., & Ollendick, T. H. (2014). Social‐cognitive, physiological, and neural mechanisms underlying emotion regulation impairments: understanding anxiety in autism spectrum disorder. International Journal of Developmental Neuroscience, 39(1), 22-36. doi:10.1016/j.ijdevneu.2014.05.012 | es_ES |
dc.description.references | Wing, L., Gould, J., & Gillberg, C. (2011). Autism spectrum disorders in the DSM-V: Better or worse than the DSM-IV? Research in Developmental Disabilities, 32(2), 768-773. doi:10.1016/j.ridd.2010.11.003 | es_ES |
dc.description.references | Yan, K., & Zhang, D. (2015). Feature selection and analysis on correlated gas sensor data with recursive feature elimination. Sensors and Actuators B: Chemical, 212, 353-363. doi:10.1016/j.snb.2015.02.025 | es_ES |
dc.description.references | Zahn, T. P., Rumsey, J. M., & Van Kammen, D. P. (1987). Autonomic nervous system activity in autistic, schizophrenic, and normal men: Effects of stimulus significance. Journal of Abnormal Psychology, 96(2), 135-144. doi:10.1037/0021-843x.96.2.135 | es_ES |