- -

Block Preconditioning Matrices for the Newton Method to Compute the Dominant lambda-Modes Associated with the Neutron Diffusion Equation

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Block Preconditioning Matrices for the Newton Method to Compute the Dominant lambda-Modes Associated with the Neutron Diffusion Equation

Show full item record

Carreño, A.; Bergamaschi, L.; Martinez, A.; Vidal-Ferràndiz, A.; Ginestar Peiro, D.; Verdú Martín, GJ. (2019). Block Preconditioning Matrices for the Newton Method to Compute the Dominant lambda-Modes Associated with the Neutron Diffusion Equation. Mathematical and Computational Applications (Online). 24(1):157-170. https://doi.org/10.3390/mca24010009

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/159343

Files in this item

Item Metadata

Title: Block Preconditioning Matrices for the Newton Method to Compute the Dominant lambda-Modes Associated with the Neutron Diffusion Equation
Author: Carreño, Amanda Bergamaschi, Luca Martinez, Angeles Vidal-Ferràndiz, Antoni Ginestar Peiro, Damián Verdú Martín, Gumersindo Jesús
UPV Unit: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear
Issued date:
Abstract:
[EN] In nuclear engineering, the lambda-modes associated with the neutron diffusion equation are applied to study the criticality of reactors and to develop modal methods for the transient analysis. The differential ...[+]
Subjects: Block preconditioner , Generalized eigenvalue problem , Neutron diffusion equation , Modified block Newton method
Copyrigths: Reconocimiento (by)
Source:
Mathematical and Computational Applications (Online). (eissn: 2297-8747 )
DOI: 10.3390/mca24010009
Publisher:
MDPI AG
Publisher version: https://doi.org/10.3390/mca24010009
Project ID:
info:eu-repo/grantAgreement/MINECO//MTM2014-58159-P/ES/PRECONDICIONADORES PARA SISTEMAS DE ECUACIONES LINEALES, PROBLEMAS DE MINIMOS CUADRADOS, CALCULO DE VALORES PROPIOS Y APLICACIONES TECNOLOGICAS/
info:eu-repo/grantAgreement/MINECO//ENE2014-59442-P/ES/DESARROLLO DE NUEVOS MODELOS Y CAPACIDADES EN EL SISTEMA DE CODIGOS ACOPLADO VALKIN%2FTH-3D. VERIFICACION, VALIDACION Y CUANTIFICACION DE INCERTIDUMBRES/
info:eu-repo/grantAgreement/MINECO//BES-2015-072901/ES/BES-2015-072901/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MTM2017-85669-P/ES/PROBLEMAS MATRICIALES: COMPUTACION, TEORIA Y APLICACIONES/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/ENE2017-89029-P/ES/VERIFICACION, VALIDACION CUANTIFICACION DE INCERTIDUMBRES Y MEJORA DE LA PLATAFORMA NEUTRONICA%2FTERMOHIDRAULICA PANTHER/
Thanks:
This work has been partially supported by the Spanish Ministerio de Economia y Competitividad under Projects ENE2014-59442-P, MTM2014-58159-P, and BES-2015-072901.
Type: Artículo

References

Vidal-Ferrandiz, A., Fayez, R., Ginestar, D., & Verdú, G. (2014). Solution of the Lambda modes problem of a nuclear power reactor using an h–p finite element method. Annals of Nuclear Energy, 72, 338-349. doi:10.1016/j.anucene.2014.05.026

Bangerth, W., Hartmann, R., & Kanschat, G. (2007). deal.II—A general-purpose object-oriented finite element library. ACM Transactions on Mathematical Software, 33(4), 24. doi:10.1145/1268776.1268779

Kronbichler, M., & Kormann, K. (2012). A generic interface for parallel cell-based finite element operator application. Computers & Fluids, 63, 135-147. doi:10.1016/j.compfluid.2012.04.012 [+]
Vidal-Ferrandiz, A., Fayez, R., Ginestar, D., & Verdú, G. (2014). Solution of the Lambda modes problem of a nuclear power reactor using an h–p finite element method. Annals of Nuclear Energy, 72, 338-349. doi:10.1016/j.anucene.2014.05.026

Bangerth, W., Hartmann, R., & Kanschat, G. (2007). deal.II—A general-purpose object-oriented finite element library. ACM Transactions on Mathematical Software, 33(4), 24. doi:10.1145/1268776.1268779

Kronbichler, M., & Kormann, K. (2012). A generic interface for parallel cell-based finite element operator application. Computers & Fluids, 63, 135-147. doi:10.1016/j.compfluid.2012.04.012

Sutton, T. M. (1988). Wielandt Iteration as Applied to the Nodal Expansion Method. Nuclear Science and Engineering, 98(2), 169-173. doi:10.13182/nse88-1

Warsa, J. S., Wareing, T. A., Morel, J. E., McGhee, J. M., & Lehoucq, R. B. (2004). Krylov Subspace Iterations for Deterministick-Eigenvalue Calculations. Nuclear Science and Engineering, 147(1), 26-42. doi:10.13182/nse04-1

Allen, E. J., & Berry, R. M. (2002). The inverse power method for calculation of multiplication factors. Annals of Nuclear Energy, 29(8), 929-935. doi:10.1016/s0306-4549(01)00082-2

Verdú, G., Ginestar, D., Vidal, V., & Muñoz-Cobo, J. L. (1994). 3D λ-modes of the neutron-diffusion equation. Annals of Nuclear Energy, 21(7), 405-421. doi:10.1016/0306-4549(94)90041-8

Verdu, G., Miro, R., Ginestar, D., & Vidal, V. (1999). The implicit restarted Arnoldi method, an efficient alternative to solve the neutron diffusion equation. Annals of Nuclear Energy, 26(7), 579-593. doi:10.1016/s0306-4549(98)00077-2

Verdú, G., Ginestar, D., Miró, R., & Vidal, V. (2005). Using the Jacobi–Davidson method to obtain the dominant Lambda modes of a nuclear power reactor. Annals of Nuclear Energy, 32(11), 1274-1296. doi:10.1016/j.anucene.2005.03.002

Hernandez, V., Roman, J. E., & Vidal, V. (2005). SLEPc. ACM Transactions on Mathematical Software, 31(3), 351-362. doi:10.1145/1089014.1089019

Evans, T. M., Stafford, A. S., Slaybaugh, R. N., & Clarno, K. T. (2010). Denovo: A New Three-Dimensional Parallel Discrete Ordinates Code in SCALE. Nuclear Technology, 171(2), 171-200. doi:10.13182/nt171-171

Hamilton, S. P., & Evans, T. M. (2015). Efficient solution of the simplified PN equations. Journal of Computational Physics, 284, 155-170. doi:10.1016/j.jcp.2014.12.014

González-Pintor, S., Ginestar, D., & Verdú, G. (2011). Updating the Lambda modes of a nuclear power reactor. Mathematical and Computer Modelling, 54(7-8), 1796-1801. doi:10.1016/j.mcm.2010.12.013

Carreño, A., Vidal-Ferràndiz, A., Ginestar, D., & Verdú, G. (2017). Spatial modes for the neutron diffusion equation and their computation. Annals of Nuclear Energy, 110, 1010-1022. doi:10.1016/j.anucene.2017.08.018

Gill, D. F., & Azmy, Y. Y. (2011). Newton’s Method for Solving k-Eigenvalue Problems in Neutron Diffusion Theory. Nuclear Science and Engineering, 167(2), 141-153. doi:10.13182/nse09-98

Knoll, D. A., Park, H., & Newman, C. (2011). Acceleration of k-Eigenvalue/Criticality Calculations Using the Jacobian-Free Newton-Krylov Method. Nuclear Science and Engineering, 167(2), 133-140. doi:10.13182/nse09-89

Kong, F., Wang, Y., Schunert, S., Peterson, J. W., Permann, C. J., Andrš, D., & Martineau, R. C. (2018). A fully coupled two-level Schwarz preconditioner based on smoothed aggregation for the transient multigroup neutron diffusion equations. Numerical Linear Algebra with Applications, 25(3), e2162. doi:10.1002/nla.2162

Lösche, R., Schwetlick, H., & Timmermann, G. (1998). A modified block Newton iteration for approximating an invariant subspace of a symmetric matrix. Linear Algebra and its Applications, 275-276, 381-400. doi:10.1016/s0024-3795(97)10018-0

NEACRP 3-D LWR Core Transient Benchmark: Final Specificationshttps://www.oecd-nea.org/science/docs/1991/neacrp-l-1991-335.pdf

OECD/NEA Ringhals 1 Stability Benchmarkhttp://www.nea.fr/science/docs/1996/nsc-doc96-22.pdf

Carreño, A., Vidal-Ferràndiz, A., Ginestar, D., & Verdú, G. (2018). Block hybrid multilevel method to compute the dominant λ-modes of the neutron diffusion equation. Annals of Nuclear Energy, 121, 513-524. doi:10.1016/j.anucene.2018.08.010

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record