- -

Stochastic inverse finite element modeling for characterization of heterogeneous material properties

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Stochastic inverse finite element modeling for characterization of heterogeneous material properties

Show full item record

Llopis-Albert, C.; Rubio Montoya, FJ.; Valero Chuliá, FJ.; Liao, H.; Zeng, S. (2019). Stochastic inverse finite element modeling for characterization of heterogeneous material properties. Materials Research Express. 6(11):1-16. https://doi.org/10.1088/2053-1591/ab4c72

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/159352

Files in this item

Item Metadata

Title: Stochastic inverse finite element modeling for characterization of heterogeneous material properties
Author: Llopis-Albert, Carlos Rubio Montoya, Francisco José Valero Chuliá, Francisco José Liao, Hunchang Zeng, Shouzhen
UPV Unit: Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials
Issued date:
Abstract:
[EN] The micro and meso-structural characteristics of materials present an inherent variability because of the intrinsic scatter in raw material and manufacturing processes. This problem is exacerbated in highly heterogeneous ...[+]
Subjects: Heterogeneity , Uncertainty , Composite materials , Finite element method , Inverse modeling
Copyrigths: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Source:
Materials Research Express. (eissn: 2053-1591 )
DOI: 10.1088/2053-1591/ab4c72
Publisher:
IOP Publishing
Publisher version: https://doi.org/10.1088/2053-1591/ab4c72
Type: Artículo

References

Albanesi, A., Bre, F., Fachinotti, V., & Gebhardt, C. (2018). Simultaneous ply-order, ply-number and ply-drop optimization of laminate wind turbine blades using the inverse finite element method. Composite Structures, 184, 894-903. doi:10.1016/j.compstruct.2017.10.051

Albanesi, A., Fachinotti, V., Peralta, I., Storti, B., & Gebhardt, C. (2017). Application of the inverse finite element method to design wind turbine blades. Composite Structures, 161, 160-172. doi:10.1016/j.compstruct.2016.11.039

Borkowski, L., & Kumar, R. S. (2018). Inverse method for estimation of composite kink-band toughness from open-hole compression strength data. Composite Structures, 186, 183-192. doi:10.1016/j.compstruct.2017.12.006 [+]
Albanesi, A., Bre, F., Fachinotti, V., & Gebhardt, C. (2018). Simultaneous ply-order, ply-number and ply-drop optimization of laminate wind turbine blades using the inverse finite element method. Composite Structures, 184, 894-903. doi:10.1016/j.compstruct.2017.10.051

Albanesi, A., Fachinotti, V., Peralta, I., Storti, B., & Gebhardt, C. (2017). Application of the inverse finite element method to design wind turbine blades. Composite Structures, 161, 160-172. doi:10.1016/j.compstruct.2016.11.039

Borkowski, L., & Kumar, R. S. (2018). Inverse method for estimation of composite kink-band toughness from open-hole compression strength data. Composite Structures, 186, 183-192. doi:10.1016/j.compstruct.2017.12.006

Baby, A., Nayak, S. Y., Heckadka, S. S., Purohit, S., Bhagat, K. K., & Thomas, L. G. (2019). Mechanical and morphological characterization of carbonized egg-shell fillers/Borassus fibre reinforced polyester hybrid composites. Materials Research Express, 6(10), 105342. doi:10.1088/2053-1591/ab3bb7

Borovinšek, M., Vesenjak, M., & Ren, Z. (2016). Estimating the base material properties of sintered metallic hollow spheres by inverse engineering procedure. Mechanics of Materials, 100, 22-30. doi:10.1016/j.mechmat.2016.06.001

Capilla, J. E., & Llopis-Albert, C. (2009). Gradual conditioning of non-Gaussian transmissivity fields to flow and mass transport data: 1. Theory. Journal of Hydrology, 371(1-4), 66-74. doi:10.1016/j.jhydrol.2009.03.015

Charmpis, D. C., Schuëller, G. I., & Pellissetti, M. F. (2007). The need for linking micromechanics of materials with stochastic finite elements: A challenge for materials science. Computational Materials Science, 41(1), 27-37. doi:10.1016/j.commatsci.2007.02.014

Cooreman, S., Lecompte, D., Sol, H., Vantomme, J., & Debruyne, D. (2007). Identification of Mechanical Material Behavior Through Inverse Modeling and DIC. Experimental Mechanics, 48(4), 421-433. doi:10.1007/s11340-007-9094-0

Goodarzi, A., Fotouhi, M., & Shodja, H. M. (2016). Inverse scattering problem of reconstruction of an embedded micro-/nano-size scatterer within couple stress theory with micro inertia. Mechanics of Materials, 103, 123-134. doi:10.1016/j.mechmat.2016.09.011

Herrera-Solaz, V., Segurado, J., & LLorca, J. (2015). On the robustness of an inverse optimization approach based on the Levenberg–Marquardt method for the mechanical behavior of polycrystals. European Journal of Mechanics - A/Solids, 53, 220-228. doi:10.1016/j.euromechsol.2015.05.005

Hu, L. Y. (2000). Mathematical Geology, 32(1), 87-108. doi:10.1023/a:1007506918588

Ignacio, I. (2014). Different Ways to Consider Heterogeneity in Quase-fragile Materials Using a Version of Lattice Model. Procedia Materials Science, 3, 499-504. doi:10.1016/j.mspro.2014.06.083

Kashfi, M., Majzoobi, G. H., Bonora, N., Iannitti, G., Ruggiero, A., & Khademi, E. (2019). A new overall nonlinear damage model for fiber metal laminates based on continuum damage mechanics. Engineering Fracture Mechanics, 206, 21-33. doi:10.1016/j.engfracmech.2018.11.043

Kashfi, M., Majzoobi, G. H., Bonora, N., Iannitti, G., Ruggiero, A., & Khademi, E. (2017). A study on fiber metal laminates by using a new damage model for composite layer. International Journal of Mechanical Sciences, 131-132, 75-80. doi:10.1016/j.ijmecsci.2017.06.045

Kim, H., Kim, D., Ahn, K., Yoo, D., Son, H.-S., Kim, G.-S., & Chung, K. (2015). Inverse characterization method for mechanical properties of strain/strain-rate/temperature/temperature-history dependent steel sheets and its application for hot press forming. Metals and Materials International, 21(5), 874-890. doi:10.1007/s12540-015-5141-z

Kouznetsova, V., Brekelmans, W. A. M., & Baaijens, F. P. T. (2001). An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics, 27(1), 37-48. doi:10.1007/s004660000212

Li, G., Xu, F., Sun, G., & Li, Q. (2014). Identification of mechanical properties of the weld line by combining 3D digital image correlation with inverse modeling procedure. The International Journal of Advanced Manufacturing Technology, 74(5-8), 893-905. doi:10.1007/s00170-014-6034-x

Libanori, R., Erb, R. M., Reiser, A., Le Ferrand, H., Süess, M. J., Spolenak, R., & Studart, A. R. (2012). Stretchable heterogeneous composites with extreme mechanical gradients. Nature Communications, 3(1). doi:10.1038/ncomms2281

Lloyd, A. A., Wang, Z. X., & Donnelly, E. (2015). Multiscale Contribution of Bone Tissue Material Property Heterogeneity to Trabecular Bone Mechanical Behavior. Journal of Biomechanical Engineering, 137(1). doi:10.1115/1.4029046

Mehrez, L., Moens, D., & Vandepitte, D. (2012). Stochastic identification of composite material properties from limited experimental databases, part I: Experimental database construction. Mechanical Systems and Signal Processing, 27, 471-483. doi:10.1016/j.ymssp.2011.09.004

Mikdam, A., Makradi, A., Koutsawa, Y., & Belouettar, S. (2013). Microstructure effect on the mechanical properties of heterogeneous composite materials. Composites Part B: Engineering, 44(1), 714-721. doi:10.1016/j.compositesb.2012.01.081

Mortazavi, F., Ghossein, E., Lévesque, M., & Villemure, I. (2014). High resolution measurement of internal full-field displacements and strains using global spectral digital volume correlation. Optics and Lasers in Engineering, 55, 44-52. doi:10.1016/j.optlaseng.2013.10.007

Ni, Y., & Chiang, M. Y. M. (2007). Prediction of elastic properties of heterogeneous materials with complex microstructures. Journal of the Mechanics and Physics of Solids, 55(3), 517-532. doi:10.1016/j.jmps.2006.09.001

Pitangueira, R. L., & Silva, R. R. e. (2002). Numerical Characterization of Concrete Heterogeneity. Materials Research, 5(3), 309-314. doi:10.1590/s1516-14392002000300015

Oller, S., Miquel Canet, J., & Zalamea, F. (2005). Composite Material Behavior Using a Homogenization Double Scale Method. Journal of Engineering Mechanics, 131(1), 65-79. doi:10.1061/(asce)0733-9399(2005)131:1(65)

Pottier, T., Toussaint, F., & Vacher, P. (2011). Contribution of heterogeneous strain field measurements and boundary conditions modelling in inverse identification of material parameters. European Journal of Mechanics - A/Solids, 30(3), 373-382. doi:10.1016/j.euromechsol.2010.10.001

Rahmani, B., Mortazavi, F., Villemure, I., & Levesque, M. (2013). A new approach to inverse identification of mechanical properties of composite materials: Regularized model updating. Composite Structures, 105, 116-125. doi:10.1016/j.compstruct.2013.04.025

The Mechanics of Constitutive Modeling. (2005). doi:10.1016/b978-0-08-044606-6.x5000-0

Sakata, S., Ashida, F., & Zako, M. (2008). Kriging-based approximate stochastic homogenization analysis for composite materials. Computer Methods in Applied Mechanics and Engineering, 197(21-24), 1953-1964. doi:10.1016/j.cma.2007.12.011

Samavati, N., McGrath, D. M., Jewett, M. A. S., van der Kwast, T., Ménard, C., & Brock, K. K. (2014). Effect of material property heterogeneity on biomechanical modeling of prostate under deformation. Physics in Medicine and Biology, 60(1), 195-209. doi:10.1088/0031-9155/60/1/195

Sanchez-Palencia, E., & Zaoui, A. (Eds.). (1987). Homogenization Techniques for Composite Media. Lecture Notes in Physics. doi:10.1007/3-540-17616-0

Sharifi, H., & Larouche, D. (2014). Numerical Study of Variation of Mechanical Properties of a Binary Aluminum Alloy with Respect to Its Grain Shapes. Materials, 7(4), 3065-3083. doi:10.3390/ma7043065

Sriramula, S., & Chryssanthopoulos, M. K. (2009). Quantification of uncertainty modelling in stochastic analysis of FRP composites. Composites Part A: Applied Science and Manufacturing, 40(11), 1673-1684. doi:10.1016/j.compositesa.2009.08.020

Torquato, S. (2010). Optimal Design of Heterogeneous Materials. Annual Review of Materials Research, 40(1), 101-129. doi:10.1146/annurev-matsci-070909-104517

Wu, X., & Zhu, Y. (2017). Heterogeneous materials: a new class of materials with unprecedented mechanical properties. Materials Research Letters, 5(8), 527-532. doi:10.1080/21663831.2017.1343208

Zhang, Z., Zhan, C., Shankar, K., Morozov, E. V., Singh, H. K., & Ray, T. (2017). Sensitivity analysis of inverse algorithms for damage detection in composites. Composite Structures, 176, 844-859. doi:10.1016/j.compstruct.2017.06.019

Zottis, J., Soares Diehl, C. A. T., & Rocha, A. da S. (2018). Evaluation of experimentally observed asymmetric distributions of hardness, strain and residual stress in cold drawn bars by FEM-simulation. Journal of Materials Research and Technology, 7(4), 469-478. doi:10.1016/j.jmrt.2018.01.004

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record