- -

Synthesis and Chemiluminescent Properties of Amino-Acylated luminol Derivatives Bearing Phosphonium Cations

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Synthesis and Chemiluminescent Properties of Amino-Acylated luminol Derivatives Bearing Phosphonium Cations

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Pantelia, Anna es_ES
dc.contributor.author Daskalaki, Ira es_ES
dc.contributor.author Cuquerella Alabort, Maria Consuelo es_ES
dc.contributor.author Rotas, Georgios es_ES
dc.contributor.author Miranda Alonso, Miguel Ángel es_ES
dc.contributor.author Vougioukalakis, Georgios C. es_ES
dc.date.accessioned 2021-01-20T04:32:13Z
dc.date.available 2021-01-20T04:32:13Z
dc.date.issued 2019-11 es_ES
dc.identifier.issn 1420-3049 es_ES
dc.identifier.uri http://hdl.handle.net/10251/159530
dc.description.abstract [EN] The monitoring of reactive oxygen species in living cells provides valuable information on cell function and performance. Lately, the development of chemiluminescence-based reactive oxygen species monitoring has gained increased attention due to the advantages posed by chemiluminescence, including its rapid measurement and high sensitivity. In this respect, specific organelle-targeting trackers with strong chemiluminescence performance are of high importance. We herein report the synthesis and chemiluminescence properties of eight novel phosphonium-functionalized amino-acylated luminol and isoluminol derivatives, designed as mitochondriotropic chemiluminescence reactive oxygen species trackers. Three different phosphonium cationic moieties were employed (phenyl, p-tolyl, and cyclohexyl), as well as two alkanoyl chains (hexanoyl and undecanoyl) as bridges/linkers. Synthesis is accomplished via the acylation of the corresponding phthalimides, as phthalhydrazide precursors, followed by hydrazinolysis. This method was chosen because the direct acylation of (iso)luminol was discouraging. The new derivatives' chemiluminescence was evaluated and compared with that of the parent molecules. A relatively poor chemiluminescence performance was observed for all derivatives, with the isoluminol-based ones being the poorest. This result is mainly attributed to the low yield of the fluorescence species formation during the chemiluminescence oxidation reaction. es_ES
dc.description.sponsorship This project was financially supported by the European Union's Horizon 2020 framework program for research and innovation under grant agreement no. 712921, as well as a Greek State Scholarships Foundation (I.K.Y.) fellowship to A.P. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Molecules es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Phthalhydrazide es_ES
dc.subject Luminol es_ES
dc.subject Chemiluminescence es_ES
dc.subject Peroxide es_ES
dc.subject Phosphonium es_ES
dc.subject Mitochondria es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title Synthesis and Chemiluminescent Properties of Amino-Acylated luminol Derivatives Bearing Phosphonium Cations es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/molecules24213957 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/712921/EU/A paradigm shift in cancer therapy – using mitochondria-powered chemiluminescence to non-invasively treat inaccessible tumours/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.description.bibliographicCitation Pantelia, A.; Daskalaki, I.; Cuquerella Alabort, MC.; Rotas, G.; Miranda Alonso, MÁ.; Vougioukalakis, GC. (2019). Synthesis and Chemiluminescent Properties of Amino-Acylated luminol Derivatives Bearing Phosphonium Cations. Molecules. 24(21):1-16. https://doi.org/10.3390/molecules24213957 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/molecules24213957 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 16 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 24 es_ES
dc.description.issue 21 es_ES
dc.identifier.pmid 31683732 es_ES
dc.identifier.pmcid PMC6865176 es_ES
dc.relation.pasarela S\406752 es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder General Secretariat for Research and Technology, Grecia es_ES
dc.description.references Gundermann, K.-D. (1965). Chemiluminescence in Organic Compounds. Angewandte Chemie International Edition in English, 4(7), 566-573. doi:10.1002/anie.196505661 es_ES
dc.description.references Rongen, H. A. H., Hoetelmans, R. M. W., Bult, A., & Van Bennekom, W. P. (1994). Chemiluminescence and immunoassays. Journal of Pharmaceutical and Biomedical Analysis, 12(4), 433-462. doi:10.1016/0731-7085(94)80027-8 es_ES
dc.description.references Dodeigne, C. (2000). Chemiluminescence as diagnostic tool. A review. Talanta, 51(3), 415-439. doi:10.1016/s0039-9140(99)00294-5 es_ES
dc.description.references Murphy, M. P., Holmgren, A., Larsson, N.-G., Halliwell, B., Chang, C. J., Kalyanaraman, B., … Winterbourn, C. C. (2011). Unraveling the Biological Roles of Reactive Oxygen Species. Cell Metabolism, 13(4), 361-366. doi:10.1016/j.cmet.2011.03.010 es_ES
dc.description.references Schieber, M., & Chandel, N. S. (2014). ROS Function in Redox Signaling and Oxidative Stress. Current Biology, 24(10), R453-R462. doi:10.1016/j.cub.2014.03.034 es_ES
dc.description.references Zhang, Y., Dai, M., & Yuan, Z. (2018). Methods for the detection of reactive oxygen species. Analytical Methods, 10(38), 4625-4638. doi:10.1039/c8ay01339j es_ES
dc.description.references Blázquez-Castro, A., Breitenbach, T., & Ogilby, P. R. (2014). Singlet oxygen and ROS in a new light: low-dose subcellular photodynamic treatment enhances proliferation at the single cell level. Photochem. Photobiol. Sci., 13(9), 1235-1240. doi:10.1039/c4pp00113c es_ES
dc.description.references Gomes, A., Fernandes, E., & Lima, J. L. F. C. (2005). Fluorescence probes used for detection of reactive oxygen species. Journal of Biochemical and Biophysical Methods, 65(2-3), 45-80. doi:10.1016/j.jbbm.2005.10.003 es_ES
dc.description.references Chen, X., Tian, X., Shin, I., & Yoon, J. (2011). Fluorescent and luminescent probes for detection of reactive oxygen and nitrogen species. Chemical Society Reviews, 40(9), 4783. doi:10.1039/c1cs15037e es_ES
dc.description.references Brand, M. D. (2016). Mitochondrial generation of superoxide and hydrogen peroxide as the source of mitochondrial redox signaling. Free Radical Biology and Medicine, 100, 14-31. doi:10.1016/j.freeradbiomed.2016.04.001 es_ES
dc.description.references Cheng, G., Zielonka, M., Dranka, B., Kumar, S. N., Myers, C. R., Bennett, B., … Kalyanaraman, B. (2018). Detection of mitochondria-generated reactive oxygen species in cells using multiple probes and methods: Potentials, pitfalls, and the future. Journal of Biological Chemistry, 293(26), 10363-10380. doi:10.1074/jbc.ra118.003044 es_ES
dc.description.references Murphy, M. P. (2008). How mitochondria produce reactive oxygen species. Biochemical Journal, 417(1), 1-13. doi:10.1042/bj20081386 es_ES
dc.description.references Su, Y., Song, H., & Lv, Y. (2019). Recent advances in chemiluminescence for reactive oxygen species sensing and imaging analysis. Microchemical Journal, 146, 83-97. doi:10.1016/j.microc.2018.12.056 es_ES
dc.description.references Hananya, N., Green, O., Blau, R., Satchi-Fainaro, R., & Shabat, D. (2017). A Highly Efficient Chemiluminescence Probe for the Detection of Singlet Oxygen in Living Cells. Angewandte Chemie International Edition, 56(39), 11793-11796. doi:10.1002/anie.201705803 es_ES
dc.description.references Prolo, C., Rios, N., Piacenza, L., Álvarez, M. N., & Radi, R. (2018). Fluorescence and chemiluminescence approaches for peroxynitrite detection. Free Radical Biology and Medicine, 128, 59-68. doi:10.1016/j.freeradbiomed.2018.02.017 es_ES
dc.description.references Vladimirov, Y. A., & Proskurnina, E. V. (2009). Free radicals and cell chemiluminescence. Biochemistry (Moscow), 74(13), 1545-1566. doi:10.1134/s0006297909130082 es_ES
dc.description.references Yamaguchi, S., Kishikawa, N., Ohyama, K., Ohba, Y., Kohno, M., Masuda, T., … Kuroda, N. (2010). Evaluation of chemiluminescence reagents for selective detection of reactive oxygen species. Analytica Chimica Acta, 665(1), 74-78. doi:10.1016/j.aca.2010.03.025 es_ES
dc.description.references Barni, F., Lewis, S. W., Berti, A., Miskelly, G. M., & Lago, G. (2007). Forensic application of the luminol reaction as a presumptive test for latent blood detection. Talanta, 72(3), 896-913. doi:10.1016/j.talanta.2006.12.045 es_ES
dc.description.references Marquette, C. A., & Blum, L. J. (2006). Applications of the luminol chemiluminescent reaction in analytical chemistry. Analytical and Bioanalytical Chemistry, 385(3), 546-554. doi:10.1007/s00216-006-0439-9 es_ES
dc.description.references Khan, P., Idrees, D., Moxley, M. A., Corbett, J. A., Ahmad, F., von Figura, G., … Hassan, M. I. (2014). Luminol-Based Chemiluminescent Signals: Clinical and Non-clinical Application and Future Uses. Applied Biochemistry and Biotechnology, 173(2), 333-355. doi:10.1007/s12010-014-0850-1 es_ES
dc.description.references Albrecht, H. O. (1928). Über die Chemiluminescenz des Aminophthalsäurehydrazids. Zeitschrift für Physikalische Chemie, 136U(1), 321-330. doi:10.1515/zpch-1928-13625 es_ES
dc.description.references Huntress, E., Stanley, L., & Parker, A. (1934). The Preparation of 3-Aminophthalhydrazide for Use in the Demonstration of Chemiluminescence. Journal of the American Chemical Society, 56(1), 241-242. doi:10.1021/ja01316a077 es_ES
dc.description.references Specht, W. (1937). Die Chemiluminescenz des Hämins, ein Hilfsmittel zur Auffindung und Erkennung forensisch wichtiger Blutspuren. Angewandte Chemie, 50(8), 155-157. doi:10.1002/ange.19370500803 es_ES
dc.description.references Zhang, N., Francis, K. P., Prakash, A., & Ansaldi, D. (2013). Enhanced detection of myeloperoxidase activity in deep tissues through luminescent excitation of near-infrared nanoparticles. Nature Medicine, 19(4), 500-505. doi:10.1038/nm.3110 es_ES
dc.description.references Gross, S., Gammon, S. T., Moss, B. L., Rauch, D., Harding, J., Heinecke, J. W., … Piwnica-Worms, D. (2009). Bioluminescence imaging of myeloperoxidase activity in vivo. Nature Medicine, 15(4), 455-461. doi:10.1038/nm.1886 es_ES
dc.description.references Guo, J., Tao, H., Dou, Y., Li, L., Xu, X., Zhang, Q., … Zhang, J. (2017). A myeloperoxidase-responsive and biodegradable luminescent material for real-time imaging of inflammatory diseases. Materials Today, 20(9), 493-500. doi:10.1016/j.mattod.2017.09.003 es_ES
dc.description.references Zielonka, J., Joseph, J., Sikora, A., Hardy, M., Ouari, O., Vasquez-Vivar, J., … Kalyanaraman, B. (2017). Mitochondria-Targeted Triphenylphosphonium-Based Compounds: Syntheses, Mechanisms of Action, and Therapeutic and Diagnostic Applications. Chemical Reviews, 117(15), 10043-10120. doi:10.1021/acs.chemrev.7b00042 es_ES
dc.description.references Ong, H. C., Hu, Z., Coimbra, J. T. S., Ramos, M. J., Kon, O. L., Xing, B., … García, F. (2019). Enabling Mitochondrial Uptake of Lipophilic Dications Using Methylated Triphenylphosphonium Moieties. Inorganic Chemistry, 58(13), 8293-8299. doi:10.1021/acs.inorgchem.8b03380 es_ES
dc.description.references Murphy, M. P., & Smith, R. A. J. (2007). Targeting Antioxidants to Mitochondria by Conjugation to Lipophilic Cations. Annual Review of Pharmacology and Toxicology, 47(1), 629-656. doi:10.1146/annurev.pharmtox.47.120505.105110 es_ES
dc.description.references Omote, Y., Miyake, T., Ohmori, S., & Sugiyama, N. (1966). The Chemiluminescence of Acyl Luminols. Bulletin of the Chemical Society of Japan, 39(5), 932-935. doi:10.1246/bcsj.39.932 es_ES
dc.description.references Omote, Y., Miyake, T., Ohmori, S., & Sugiyama, N. (1967). The Chemiluminescence of Luminol and Acetyl-luminol. Bulletin of the Chemical Society of Japan, 40(4), 899-903. doi:10.1246/bcsj.40.899 es_ES
dc.description.references Gundermann, K.-D., & Drawert, M. (1962). Konstitution und Chemilumineszenz, I. Sterische Resonanzhinderung bei alkylierten Amino-phthalhydraziden. Chemische Berichte, 95(8), 2018-2026. doi:10.1002/cber.19620950825 es_ES
dc.description.references Liu, J.-L., Zhao, M., Zhuo, Y., Chai, Y.-Q., & Yuan, R. (2017). Highly Efficient Intramolecular Electrochemiluminescence Energy Transfer for Ultrasensitive Bioanalysis of Aflatoxin M1. Chemistry - A European Journal, 23(8), 1853-1859. doi:10.1002/chem.201604411 es_ES
dc.description.references Zhang, W.-Z., Du, Z.-B., Song, B., Ye, Z.-Q., & Yuan, J.-L. (2015). Development of a triple channel detection probe for hydrogen peroxide. Chinese Chemical Letters, 26(12), 1465-1469. doi:10.1016/j.cclet.2015.10.022 es_ES
dc.description.references Shibata, T., Yoshimura, H., Yamayoshi, A., Tsuda, N., & Dragusha, S. (2019). Hydrazide Derivatives of Luminol for Chemiluminescence-Labelling of Macromolecules. Chemical and Pharmaceutical Bulletin, 67(8), 772-774. doi:10.1248/cpb.c19-00126 es_ES
dc.description.references Theodossiou, T. A., Sideratou, Z., Tsiourvas, D., & Paleos, C. M. (2011). A novel mitotropic oligolysine nanocarrier: Targeted delivery of covalently bound D-Luciferin to cell mitochondria. Mitochondrion, 11(6), 982-986. doi:10.1016/j.mito.2011.08.004 es_ES
dc.description.references Selinger, Z., & Lapidot, Y. (1966). Synthesis of fatty acid anhydrides by reaction with dicyclohexylcarbodiimide. Journal of Lipid Research, 7(1), 174-175. doi:10.1016/s0022-2275(20)39603-6 es_ES
dc.description.references Chu, W., Tu, Z., McElveen, E., Xu, J., Taylor, M., Luedtke, R. R., & Mach, R. H. (2005). Synthesis and in vitro binding of N-phenyl piperazine analogs as potential dopamine D3 receptor ligands. Bioorganic & Medicinal Chemistry, 13(1), 77-87. doi:10.1016/j.bmc.2004.09.054 es_ES
dc.description.references Karatani, H. (1987). Microenvironmental Effects of Water-Soluble Polymers on the Chemiluminescence of Luminol and Its Analogs. Bulletin of the Chemical Society of Japan, 60(6), 2023-2029. doi:10.1246/bcsj.60.2023 es_ES
dc.description.references Neelakantan, S., Surjawan, I., Karacelik, H., Hicks, C. L., & Crooks, P. A. (2009). Synthesis of novel isoluminol probes and their use in rapid bacterial assays. Bioorganic & Medicinal Chemistry Letters, 19(19), 5722-5726. doi:10.1016/j.bmcl.2009.08.004 es_ES
dc.description.references Yang, L., Liu, X., Gao, L., Qi, F., Tian, H., & Song, X. (2015). A selective and sensitive phthalimide-based fluorescent probe for hydrogen sulfide with a large Stokes shift. RSC Advances, 5(119), 98154-98159. doi:10.1039/c5ra19081a es_ES
dc.description.references Ando, Y., Niwa, K., Yamada, N., Irie, T., Enomoto, T., Kubota, H., … Akiyama, H. (2007). Development of a Quantitative Bio/Chemiluminescence Spectrometer Determining Quantum Yields: Re-examination of the Aqueous Luminol Chemiluminescence Standard. Photochemistry and Photobiology, 83(5), 1205-1210. doi:10.1111/j.1751-1097.2007.00140.x es_ES
dc.description.references LEE, J., & SELIGER, H. H. (1972). QUANTUM YIELDS OF THE LUMINOL CHEMILUMINESCENCE REACTION IN AQUEOUS AND APROTIC SOLVENTS. Photochemistry and Photobiology, 15(2), 227-237. doi:10.1111/j.1751-1097.1972.tb06241.x es_ES
dc.description.references Lohbeck, J., & Miller, A. K. (2016). Practical synthesis of a phthalimide-based Cereblon ligand to enable PROTAC development. Bioorganic & Medicinal Chemistry Letters, 26(21), 5260-5262. doi:10.1016/j.bmcl.2016.09.048 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem