- -

Synthesis and Chemiluminescent Properties of Amino-Acylated luminol Derivatives Bearing Phosphonium Cations

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Synthesis and Chemiluminescent Properties of Amino-Acylated luminol Derivatives Bearing Phosphonium Cations

Mostrar el registro completo del ítem

Pantelia, A.; Daskalaki, I.; Cuquerella Alabort, MC.; Rotas, G.; Miranda Alonso, MÁ.; Vougioukalakis, GC. (2019). Synthesis and Chemiluminescent Properties of Amino-Acylated luminol Derivatives Bearing Phosphonium Cations. Molecules. 24(21):1-16. https://doi.org/10.3390/molecules24213957

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/159530

Ficheros en el ítem

Metadatos del ítem

Título: Synthesis and Chemiluminescent Properties of Amino-Acylated luminol Derivatives Bearing Phosphonium Cations
Autor: Pantelia, Anna Daskalaki, Ira Cuquerella Alabort, Maria Consuelo Rotas, Georgios Miranda Alonso, Miguel Ángel Vougioukalakis, Georgios C.
Entidad UPV: Universitat Politècnica de València. Departamento de Química - Departament de Química
Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Fecha difusión:
Resumen:
[EN] The monitoring of reactive oxygen species in living cells provides valuable information on cell function and performance. Lately, the development of chemiluminescence-based reactive oxygen species monitoring has gained ...[+]
Palabras clave: Phthalhydrazide , Luminol , Chemiluminescence , Peroxide , Phosphonium , Mitochondria
Derechos de uso: Reconocimiento (by)
Fuente:
Molecules. (issn: 1420-3049 )
DOI: 10.3390/molecules24213957
Editorial:
MDPI AG
Versión del editor: https://doi.org/10.3390/molecules24213957
Código del Proyecto:
info:eu-repo/grantAgreement/EC/H2020/712921/EU/A paradigm shift in cancer therapy – using mitochondria-powered chemiluminescence to non-invasively treat inaccessible tumours/
Agradecimientos:
This project was financially supported by the European Union's Horizon 2020 framework program for research and innovation under grant agreement no. 712921, as well as a Greek State Scholarships Foundation (I.K.Y.) fellowship ...[+]
Tipo: Artículo

References

Gundermann, K.-D. (1965). Chemiluminescence in Organic Compounds. Angewandte Chemie International Edition in English, 4(7), 566-573. doi:10.1002/anie.196505661

Rongen, H. A. H., Hoetelmans, R. M. W., Bult, A., & Van Bennekom, W. P. (1994). Chemiluminescence and immunoassays. Journal of Pharmaceutical and Biomedical Analysis, 12(4), 433-462. doi:10.1016/0731-7085(94)80027-8

Dodeigne, C. (2000). Chemiluminescence as diagnostic tool. A review. Talanta, 51(3), 415-439. doi:10.1016/s0039-9140(99)00294-5 [+]
Gundermann, K.-D. (1965). Chemiluminescence in Organic Compounds. Angewandte Chemie International Edition in English, 4(7), 566-573. doi:10.1002/anie.196505661

Rongen, H. A. H., Hoetelmans, R. M. W., Bult, A., & Van Bennekom, W. P. (1994). Chemiluminescence and immunoassays. Journal of Pharmaceutical and Biomedical Analysis, 12(4), 433-462. doi:10.1016/0731-7085(94)80027-8

Dodeigne, C. (2000). Chemiluminescence as diagnostic tool. A review. Talanta, 51(3), 415-439. doi:10.1016/s0039-9140(99)00294-5

Murphy, M. P., Holmgren, A., Larsson, N.-G., Halliwell, B., Chang, C. J., Kalyanaraman, B., … Winterbourn, C. C. (2011). Unraveling the Biological Roles of Reactive Oxygen Species. Cell Metabolism, 13(4), 361-366. doi:10.1016/j.cmet.2011.03.010

Schieber, M., & Chandel, N. S. (2014). ROS Function in Redox Signaling and Oxidative Stress. Current Biology, 24(10), R453-R462. doi:10.1016/j.cub.2014.03.034

Zhang, Y., Dai, M., & Yuan, Z. (2018). Methods for the detection of reactive oxygen species. Analytical Methods, 10(38), 4625-4638. doi:10.1039/c8ay01339j

Blázquez-Castro, A., Breitenbach, T., & Ogilby, P. R. (2014). Singlet oxygen and ROS in a new light: low-dose subcellular photodynamic treatment enhances proliferation at the single cell level. Photochem. Photobiol. Sci., 13(9), 1235-1240. doi:10.1039/c4pp00113c

Gomes, A., Fernandes, E., & Lima, J. L. F. C. (2005). Fluorescence probes used for detection of reactive oxygen species. Journal of Biochemical and Biophysical Methods, 65(2-3), 45-80. doi:10.1016/j.jbbm.2005.10.003

Chen, X., Tian, X., Shin, I., & Yoon, J. (2011). Fluorescent and luminescent probes for detection of reactive oxygen and nitrogen species. Chemical Society Reviews, 40(9), 4783. doi:10.1039/c1cs15037e

Brand, M. D. (2016). Mitochondrial generation of superoxide and hydrogen peroxide as the source of mitochondrial redox signaling. Free Radical Biology and Medicine, 100, 14-31. doi:10.1016/j.freeradbiomed.2016.04.001

Cheng, G., Zielonka, M., Dranka, B., Kumar, S. N., Myers, C. R., Bennett, B., … Kalyanaraman, B. (2018). Detection of mitochondria-generated reactive oxygen species in cells using multiple probes and methods: Potentials, pitfalls, and the future. Journal of Biological Chemistry, 293(26), 10363-10380. doi:10.1074/jbc.ra118.003044

Murphy, M. P. (2008). How mitochondria produce reactive oxygen species. Biochemical Journal, 417(1), 1-13. doi:10.1042/bj20081386

Su, Y., Song, H., & Lv, Y. (2019). Recent advances in chemiluminescence for reactive oxygen species sensing and imaging analysis. Microchemical Journal, 146, 83-97. doi:10.1016/j.microc.2018.12.056

Hananya, N., Green, O., Blau, R., Satchi-Fainaro, R., & Shabat, D. (2017). A Highly Efficient Chemiluminescence Probe for the Detection of Singlet Oxygen in Living Cells. Angewandte Chemie International Edition, 56(39), 11793-11796. doi:10.1002/anie.201705803

Prolo, C., Rios, N., Piacenza, L., Álvarez, M. N., & Radi, R. (2018). Fluorescence and chemiluminescence approaches for peroxynitrite detection. Free Radical Biology and Medicine, 128, 59-68. doi:10.1016/j.freeradbiomed.2018.02.017

Vladimirov, Y. A., & Proskurnina, E. V. (2009). Free radicals and cell chemiluminescence. Biochemistry (Moscow), 74(13), 1545-1566. doi:10.1134/s0006297909130082

Yamaguchi, S., Kishikawa, N., Ohyama, K., Ohba, Y., Kohno, M., Masuda, T., … Kuroda, N. (2010). Evaluation of chemiluminescence reagents for selective detection of reactive oxygen species. Analytica Chimica Acta, 665(1), 74-78. doi:10.1016/j.aca.2010.03.025

Barni, F., Lewis, S. W., Berti, A., Miskelly, G. M., & Lago, G. (2007). Forensic application of the luminol reaction as a presumptive test for latent blood detection. Talanta, 72(3), 896-913. doi:10.1016/j.talanta.2006.12.045

Marquette, C. A., & Blum, L. J. (2006). Applications of the luminol chemiluminescent reaction in analytical chemistry. Analytical and Bioanalytical Chemistry, 385(3), 546-554. doi:10.1007/s00216-006-0439-9

Khan, P., Idrees, D., Moxley, M. A., Corbett, J. A., Ahmad, F., von Figura, G., … Hassan, M. I. (2014). Luminol-Based Chemiluminescent Signals: Clinical and Non-clinical Application and Future Uses. Applied Biochemistry and Biotechnology, 173(2), 333-355. doi:10.1007/s12010-014-0850-1

Albrecht, H. O. (1928). Über die Chemiluminescenz des Aminophthalsäurehydrazids. Zeitschrift für Physikalische Chemie, 136U(1), 321-330. doi:10.1515/zpch-1928-13625

Huntress, E., Stanley, L., & Parker, A. (1934). The Preparation of 3-Aminophthalhydrazide for Use in the Demonstration of Chemiluminescence. Journal of the American Chemical Society, 56(1), 241-242. doi:10.1021/ja01316a077

Specht, W. (1937). Die Chemiluminescenz des Hämins, ein Hilfsmittel zur Auffindung und Erkennung forensisch wichtiger Blutspuren. Angewandte Chemie, 50(8), 155-157. doi:10.1002/ange.19370500803

Zhang, N., Francis, K. P., Prakash, A., & Ansaldi, D. (2013). Enhanced detection of myeloperoxidase activity in deep tissues through luminescent excitation of near-infrared nanoparticles. Nature Medicine, 19(4), 500-505. doi:10.1038/nm.3110

Gross, S., Gammon, S. T., Moss, B. L., Rauch, D., Harding, J., Heinecke, J. W., … Piwnica-Worms, D. (2009). Bioluminescence imaging of myeloperoxidase activity in vivo. Nature Medicine, 15(4), 455-461. doi:10.1038/nm.1886

Guo, J., Tao, H., Dou, Y., Li, L., Xu, X., Zhang, Q., … Zhang, J. (2017). A myeloperoxidase-responsive and biodegradable luminescent material for real-time imaging of inflammatory diseases. Materials Today, 20(9), 493-500. doi:10.1016/j.mattod.2017.09.003

Zielonka, J., Joseph, J., Sikora, A., Hardy, M., Ouari, O., Vasquez-Vivar, J., … Kalyanaraman, B. (2017). Mitochondria-Targeted Triphenylphosphonium-Based Compounds: Syntheses, Mechanisms of Action, and Therapeutic and Diagnostic Applications. Chemical Reviews, 117(15), 10043-10120. doi:10.1021/acs.chemrev.7b00042

Ong, H. C., Hu, Z., Coimbra, J. T. S., Ramos, M. J., Kon, O. L., Xing, B., … García, F. (2019). Enabling Mitochondrial Uptake of Lipophilic Dications Using Methylated Triphenylphosphonium Moieties. Inorganic Chemistry, 58(13), 8293-8299. doi:10.1021/acs.inorgchem.8b03380

Murphy, M. P., & Smith, R. A. J. (2007). Targeting Antioxidants to Mitochondria by Conjugation to Lipophilic Cations. Annual Review of Pharmacology and Toxicology, 47(1), 629-656. doi:10.1146/annurev.pharmtox.47.120505.105110

Omote, Y., Miyake, T., Ohmori, S., & Sugiyama, N. (1966). The Chemiluminescence of Acyl Luminols. Bulletin of the Chemical Society of Japan, 39(5), 932-935. doi:10.1246/bcsj.39.932

Omote, Y., Miyake, T., Ohmori, S., & Sugiyama, N. (1967). The Chemiluminescence of Luminol and Acetyl-luminol. Bulletin of the Chemical Society of Japan, 40(4), 899-903. doi:10.1246/bcsj.40.899

Gundermann, K.-D., & Drawert, M. (1962). Konstitution und Chemilumineszenz, I. Sterische Resonanzhinderung bei alkylierten Amino-phthalhydraziden. Chemische Berichte, 95(8), 2018-2026. doi:10.1002/cber.19620950825

Liu, J.-L., Zhao, M., Zhuo, Y., Chai, Y.-Q., & Yuan, R. (2017). Highly Efficient Intramolecular Electrochemiluminescence Energy Transfer for Ultrasensitive Bioanalysis of Aflatoxin M1. Chemistry - A European Journal, 23(8), 1853-1859. doi:10.1002/chem.201604411

Zhang, W.-Z., Du, Z.-B., Song, B., Ye, Z.-Q., & Yuan, J.-L. (2015). Development of a triple channel detection probe for hydrogen peroxide. Chinese Chemical Letters, 26(12), 1465-1469. doi:10.1016/j.cclet.2015.10.022

Shibata, T., Yoshimura, H., Yamayoshi, A., Tsuda, N., & Dragusha, S. (2019). Hydrazide Derivatives of Luminol for Chemiluminescence-Labelling of Macromolecules. Chemical and Pharmaceutical Bulletin, 67(8), 772-774. doi:10.1248/cpb.c19-00126

Theodossiou, T. A., Sideratou, Z., Tsiourvas, D., & Paleos, C. M. (2011). A novel mitotropic oligolysine nanocarrier: Targeted delivery of covalently bound D-Luciferin to cell mitochondria. Mitochondrion, 11(6), 982-986. doi:10.1016/j.mito.2011.08.004

Selinger, Z., & Lapidot, Y. (1966). Synthesis of fatty acid anhydrides by reaction with dicyclohexylcarbodiimide. Journal of Lipid Research, 7(1), 174-175. doi:10.1016/s0022-2275(20)39603-6

Chu, W., Tu, Z., McElveen, E., Xu, J., Taylor, M., Luedtke, R. R., & Mach, R. H. (2005). Synthesis and in vitro binding of N-phenyl piperazine analogs as potential dopamine D3 receptor ligands. Bioorganic & Medicinal Chemistry, 13(1), 77-87. doi:10.1016/j.bmc.2004.09.054

Karatani, H. (1987). Microenvironmental Effects of Water-Soluble Polymers on the Chemiluminescence of Luminol and Its Analogs. Bulletin of the Chemical Society of Japan, 60(6), 2023-2029. doi:10.1246/bcsj.60.2023

Neelakantan, S., Surjawan, I., Karacelik, H., Hicks, C. L., & Crooks, P. A. (2009). Synthesis of novel isoluminol probes and their use in rapid bacterial assays. Bioorganic & Medicinal Chemistry Letters, 19(19), 5722-5726. doi:10.1016/j.bmcl.2009.08.004

Yang, L., Liu, X., Gao, L., Qi, F., Tian, H., & Song, X. (2015). A selective and sensitive phthalimide-based fluorescent probe for hydrogen sulfide with a large Stokes shift. RSC Advances, 5(119), 98154-98159. doi:10.1039/c5ra19081a

Ando, Y., Niwa, K., Yamada, N., Irie, T., Enomoto, T., Kubota, H., … Akiyama, H. (2007). Development of a Quantitative Bio/Chemiluminescence Spectrometer Determining Quantum Yields: Re-examination of the Aqueous Luminol Chemiluminescence Standard. Photochemistry and Photobiology, 83(5), 1205-1210. doi:10.1111/j.1751-1097.2007.00140.x

LEE, J., & SELIGER, H. H. (1972). QUANTUM YIELDS OF THE LUMINOL CHEMILUMINESCENCE REACTION IN AQUEOUS AND APROTIC SOLVENTS. Photochemistry and Photobiology, 15(2), 227-237. doi:10.1111/j.1751-1097.1972.tb06241.x

Lohbeck, J., & Miller, A. K. (2016). Practical synthesis of a phthalimide-based Cereblon ligand to enable PROTAC development. Bioorganic & Medicinal Chemistry Letters, 26(21), 5260-5262. doi:10.1016/j.bmcl.2016.09.048

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem