- -

Citrus tristeza virus: Host RNA Silencing and Virus Counteraction

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by


Citrus tristeza virus: Host RNA Silencing and Virus Counteraction

Show full item record

Ruiz-Ruiz, S.; Navarro, B.; Peña Garcia, L.; Navarro, L.; Moreno, P.; Di Serio, F.; Flores Pedauye, R. (2019). Citrus tristeza virus: Host RNA Silencing and Virus Counteraction. Methods in Molecular Biology. 2015:195-207. https://doi.org/10.1007/978-1-4939-9558-5_14

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/159537

Files in this item

Item Metadata

Title: Citrus tristeza virus: Host RNA Silencing and Virus Counteraction
Author: Ruiz-Ruiz, Susana Navarro, Beatriz PEÑA GARCIA, LEANDRO Navarro, Luis Moreno, Pedro Di Serio, Francesco FLORES PEDAUYE, RICARDO
UPV Unit: Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes
Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia
Issued date:
[EN] To dissect the host RNA silencing response incited by citrus tristeza virus (CTV, genus Closterovirus), a (+) ssRNA of similar to 19300 nt, and the counter reaction deployed by the virus via its three RNA silencing ...[+]
Subjects: Closteroviruses , MicroRNAs , RNA silencing , Small interfering RNAs
Copyrigths: Cerrado
Methods in Molecular Biology. (issn: 1064-3745 )
DOI: 10.1007/978-1-4939-9558-5_14
Publisher version: https://doi.org/10.1007/978-1-4939-9558-5_14
Project ID:
info:eu-repo/grantAgreement/Generalitat Valenciana//PROMETEO08%2F2008%2F121/ES/Biotecnología de cítricos/
info:eu-repo/grantAgreement/MICINN//AGL2009-08052/ES/Mejora Genetica De La Calidad Y De La Respuesta A Estreses Bioticos De Los Citricos Mediante Ingenieria Genetica/
This research was supported by a grant (Prometeo/2008/121) from the Generalitat Valenciana, Spain, and by a grant (AGL2009-08052) from the Ministerio de Ciencia e Innovacio¿nFondo Europeo de Desarrollo Regional. S. Ruiz-Ruiz ...[+]
Type: Artículo Capítulo de libro


Bar-Joseph M, Garnsey SM, Gonsalves D (1979) The closteroviruses: a distinct group of elongated plant viruses. Adv Virus Res 25:93–168

Moreno P, Ambrós S, Albiach-Martí MR et al (2008) Citrus tristeza virus: a pathogen that changed the course of the citrus industry. Mol Plant Pathol 9:251–268

Dawson WO, Garnsey SM, Tatineni S et al (2013) Citrus tristeza virus-host interactions. Front Microbiol 4:88 [+]
Bar-Joseph M, Garnsey SM, Gonsalves D (1979) The closteroviruses: a distinct group of elongated plant viruses. Adv Virus Res 25:93–168

Moreno P, Ambrós S, Albiach-Martí MR et al (2008) Citrus tristeza virus: a pathogen that changed the course of the citrus industry. Mol Plant Pathol 9:251–268

Dawson WO, Garnsey SM, Tatineni S et al (2013) Citrus tristeza virus-host interactions. Front Microbiol 4:88

Pappu HR, Karasev AV, Anderson EJ et al (1994) Nucleotide sequence and organization of eight 3′ open reading frames of the citrus tristeza closterovirus genome. Virology 199:35–46

Karasev AV, Boyko VP, Gowda S et al (1995) Complete sequence of the Citrus tristeza virus RNA genome. Virology 208:511–520

Mawassi M, Mietkiewska E, Gofman R et al (1996) Unusual sequence relationships between two isolates of Citrus tristeza virus. J Gen Virol 77:2359–2364

Vives MC, Rubio L, López C et al (1999) The complete genome sequence of the major component of a mild Citrus tristeza virus isolate. J Gen Virol 80:811–816

Yang ZN, Mathews DH, Dodds JA et al (1999) Molecular characterization of an isolate of Citrus tristeza virus that causes severe symptoms in sweet orange. Virus Genes 19:131–142

Hilf M, Karasev AV, Pappu HR et al (1995) Characterization of Citrus tristeza virus subgenomic RNAs in infected tissue. Virology 208:576–582

Satyanarayana T, Gowda S, Mawassi M et al (2000) Closterovirus encoded HSP70 homolog and p61 in addition to both coat proteins function in efficient virion assembly. Virology 278:253–265

Sekiya ME, Lawrence SD, Mccaffery M et al (1991) Molecular cloning and nucleotide sequencing of the coat protein gene of Citrus tristeza virus. J Gen Virol 72:1013–1020

Febres VJ, Pappu HR, Anderson EJ et al (1994) The diverged copy of the Citrus tristeza virus coat protein is expressed in vivo. Virology 201:178–181

Febres VJ, Ashoulin L, Mawassi M et al (1996) The p27 protein is present at one end of Citrus tristeza virus particles. Phytopathology 86:1331–1335

Satyanarayana T, Gowda S, Ayllon M et al (2004) Closterovirus bipolar virion: Evidence for initiation of assembly by minor coat protein and its restriction to the genomic RNA 5′ region. Proc Natl Acad Sci U S A 101:799–804

Kang SH, Atallah OO, Sun YD et al (2018) Functional diversification upon leader protease domain duplication in the Citrus tristeza virus genome: Role of RNA sequences and the encoded proteins. Virology 514:192–202

Gowda S, Satyanarayana T, Davis CL et al (2000) The p20 gene product of Citrus tristeza virus accumulates in the amorphous inclusion bodies. Virology 274:246–254

López C, Navas-Castillo J, Gowda S et al (2000) The 23 kDa protein coded by the 3′-terminal gene of Citrus tristeza virus is an RNA-binding protein. Virology 269:462–470

Satyanarayana T, Gowda S, Ayllon MA et al (2002a) The p23 protein of Citrus tristeza virus controls asymmetrical RNA accumulation. J Virol 76:473–483

Ghorbel R, López C, Fagoaga C et al (2001) Transgenic citrus plants expressing the Citrus tristeza virus p23 protein exhibit viral-like symptoms. Mol Plant Pathol 2:27–36

Fagoaga C, Lopez C, Moreno P et al (2005) Viral-like symptoms induced by the ectopic expression of the p23 gene of Citrus tristeza virus are citrus specific and do not correlate with the pathogenicity of the virus strain. Mol Plant-Microbe Interact 18:435–445

Fagoaga C, Lopez C, de Mendoza AH et al (2006) Post-transcriptional gene silencing of the p23 silencing suppressor of Citrus tristeza virus confers resistance to the virus in transgenic Mexican lime. Plant Mol Biol 60:153–165

Soler N, Fagoaga C, Lopez C et al (2015) Symptoms induced by transgenic expression of p23 from Citrus tristeza virus in phloem-associated cells of Mexican lime mimic virus infection without the aberrations accompanying constitutive expression. Mol Plant Pathol 16:388–399

Soler N, Plomer M, Fagoaga C et al (2012) Transformation of Mexican lime with an intron-hairpin construct expressing untranslatable versions of the genes coding for the three silencing suppressors of Citrus tristeza virus confers complete resistance to the virus. Plant Biotechnol J 10:597–608

Tatineni S, Robertson CJ, Garnsey SM et al (2008) Three genes of Citrus tristeza virus are dispensable for infection and movement throughout some varieties of citrus trees. Virology 376:297–307

Tatineni S, Robertson CJ, Garnsey SM et al (2011) A plant virus evolved by acquiring multiple nonconserved genes to extend its host range. Proc Natl Acad Sci U S A 108:17366–17371

Tatineni S, Dawson WO (2012) Enhancement or attenuation of disease by deletion of genes from Citrus tristeza virus. J Virol 86:7850–7857

Folimonova SY (2012) Superinfection exclusion is an active virus-controlled function that requires a specific viral protein. J Virol 86:5554–5561

Atallah OO, Kang SH, El-Mohtar C et al (2016) A 5′-proximal region of the Citrus tristeza virus genome encoding two leader proteases is involved in virus superinfection exclusion. Virology 489:108–115

López C, Ayllón MA, Navas-Castillo J et al (1998) Sequence polymorphism in the 5′ and 3′ terminal regions of tristeza virus RNA. Phytopathology 88:685–691

Satyanarayana T, Gowda S, Ayllon MA et al (2002b) Mutational analysis of the replication signals in the 3′-nontranslated region of Citrus tristeza virus. Virology 300:140–152

Ayllón MA, López C, Navas-Castillo J et al (2001) Polymorphism of the 5′-terminal region of Citrus tristeza virus (CTV) RNA: Incidence of three sequence types in isolates of different origin and pathogenicity. Arch Virol 146:27–40

Gowda S, Satyanarayana T, Ayllón MA et al (2003) The conserved structures of the 5′ nontranslated region of Citrus tristeza virus are involved in replication and virion assembly. Virology 317:50–64

Carthew RW, Sontheimer EJ (2009) Origins and mechanisms of miRNAs and siRNAs. Cell 136:642–655

Molnar A, Csorba T, Lakatos L et al (2005) Plant virus-derived small interfering RNAs originate predominantly from highly structured single-stranded viral RNAs. J Virol 79:7812–7818

Qi Y, Denli AM, Hannon GJ (2005) Biochemical specialization within Arabidopsis RNA silencing pathways. Mol Cell 19:421–428

Dalmay T, Hamilton A, Rudd S et al (2000) An RNA-dependent RNA polymerase gene in Arabidopsis is required for posttranscriptional gene silencing mediated by a transgene but not by a virus. Cell 101:543–553

Hamilton AJ, Baulcombe DC (1999) A species of small antisense RNA in posttranscriptional gene silencing in plants. Science 286:950–952

Mallory A, Vaucheret H (2010) Form, function, and regulation of ARGONAUTE proteins. Plant Cell 22:3879–3889

Ma Z, Zhang X (2018) Actions of plant Argonautes: predictable or unpredictable? Curr Opin Plant Biol 45:59–67

Omarov RT, Cioperlik JJ, Sholthof HB (2007) RNAi-associated ssRNA-specific ribonucleases in tombusvirus P19 mutant-infected plants and evidence for a discrete siRNA-containing effector complex. Proc Natl Acad Sci U S A 104:1714–1719

Pantaleo V, Szittya G, Burgyán J (2007) Molecular bases of viral RNA targeting by viral small interfering RNA-programmed RISC. J Virol 81:3797–3806

Ding SW (2010) RNA-based antiviral immunity. Nat Rev Immunol 10:632–644

Csorba T, Kontra L, Burgyán J (2015) Viral silencing suppressors: tools forged to fine-tune host-pathogen coexistence. Virology 479-480:85–103

Díaz-Pendón JA, Ding SW (2008) Direct and indirect roles of viral suppressors of RNA silencing in pathogenesis. Annu Rev Phytopathol 46:303–326

Kontra L, Csorba T, Tavazza M et al (2016) Distinct effects of p19 RNA silencing suppressor on small RNA mediated pathways in plants. PloS Path 12:e1005935

Ruiz-Ruiz S, Navarro B, Gisel A et al (2011) Citrus tristeza virus infection induces the accumulation of viral small RNAs (21-24-nt) mapping preferentially at the 3′-terminal region of the genomic RNA and affects the host small RNA profile. Plant Mol Biol 75:607–619

Dolgosheina EV, Morin RD, Aksay G et al (2008) Conifers have a unique small RNA silencing signature. RNA 14:1508–1515

Morin RD, Aksay G, Dolgosheina E et al (2008) Comparative analysis of the small RNA transcriptomes of Pinus contorta and Oryza sativa. Genome Res 18:571–584

Mi S, Cai T, Hu Y et al (2008) Sorting of small RNAs into Arabidopsis argonaute complexes is directed by the 5′ terminal nucleotide. Cell 133:116–127

Montgomery TA, Howell MD, Cuperus JT et al (2008) Specificity of ARGONAUTE7-miR390 interaction and dual functionality in TAS3 trans-acting siRNA formation. Cell 133:128–141

Donaire L, Wang Y, González-Ibeas D et al (2009) Deep-sequencing of plant viral small RNAs reveals effective and widespread targeting of viral genomes. Virology 392:203–214

Kreuze JF, Pérez A, Untiveros M et al (2009) Complete viral genome sequence and discovery of novel viruses by deep sequencing of small RNAs: a generic method for diagnosis, discovery and sequencing of viruses. Virology 388:1–7

Moreno P, Guerri J, Muñoz N (1990) Identification of Spanish strains of Citrus tristeza virus (CTV) by analysis of double-stranded RNAs. Phytopathology 80:477–482

Aramburu J, Navas-Castillo J, Moreno P et al (1991) Detection of double-stranded RNA by ELISA and dot immunobinding assay using an antiserum to synthetic polynucleotides. J Virol Methods 33:1–11

Bar-Joseph M, Dawson WO (2008) Citrus tristeza virus. In: Mahy BWJ, Van Regenmortel MHV (eds) Encyclopedia of virology, 3rd edn. Elsevier, Oxford, pp 520–525

Folimonova SY, Harper SJ, Leonard MT et al (2014) Superinfection exclusion by Citrus tristeza virus does not correlate with the production of viral small RNAs. Virology 468-470:462–471

Licciardello G, Scuderi G, Ferraro R et al (2015) Deep sequencing and analysis of small RNAs in sweet orange grafted on sour orange infected with two Citrus tristeza virus isolates prevalent in Sicily. Arch Virol 160:2583–2589

Matsumura EE, Coletta-Filho HD, Nouri S et al (2017) Deep sequencing analysis of RNAs from citrus plants grown in a citrus sudden death-affected area reveals diverse known and putative novel viruses. Viruses 9:92

Yokomi RK, Selvaraj V, Maheshwari Y et al (2017) Identification and characterization of Citrus tristeza virus isolates breaking resistance in trifoliate orange in California. Phytopathology 107:901–908

Visser M, Cook G, Burger JT et al (2017) In silico analysis of the grapefruit sRNAome, transcriptome and gene regulation in response to CTV-CDVd co-infection. Virol J 14:200

Song C, Fang J, Li X et al (2007) Identification and characterization of 27 conserved microRNAs in citrus. Planta 230:671–685

Morel JB, Godon C, Mourrain P et al (2002) Fertile hypomorphic ARGONAUTE (ago1) mutants impaired in posttranscriptional gene silencing and virus resistance. Plant Cell 14:629–639

Baumberger N, Baulcombe DC (2005) Arabidopsis ARGONAUTE1 is an RNA slicer that selectively recruits microRNAs and short interfering RNAs. Proc Natl Acad Sci U S A 102:11928–11933

Qu F, Ye X, Morris TJ (2008) Arabidopsis DRB4, AGO1, AGO7, and RDR6 participate in a DCL4-initiated antiviral RNA silencing pathway negatively regulated by DCL1. Proc Natl Acad Sci U S A 105:14732–14737

Vaucheret H, Mallory AC, Bartel DP (2006) AGO1 homeostasis entails coexpression of miR168 and AGO1 and preferential stabilization of miR168 by AGO1. Mol Cell 22:129–136

Varallyay E, Valoczi A, Agyi A et al (2010) Plant virus-mediated induction of miR168 is associated with repression of ARGONAUTE1 accumulation. EMBO J 29:3507–3519

Yang ZN, Ye XR, Molina J et al (2003) Sequence analysis of a 282-kilobase region surrounding the Citrus tristeza virus resistance gene (Ctv) locus in Poncirus trifoliata L. Raf. Plant Physiol 131:482–492

Lu R, Folimonov A, Shintaku M et al (2004) Three distinct suppressors of RNA silencing encoded by a 20-kb viral RNA genome. Proc Natl Acad Sci U S A 101:15742–15747

Flores R, Ruiz-Ruiz S, Soler N et al (2013) Citrus tristeza virus p23: a unique protein mediating key virus-host interactions. Front Microbiol 4:98

Ruiz-Ruiz S, Soler N, Sánchez-Navarro J et al (2013) Citrus tristeza virus p23: determinants for nucleolar localization and their influence on suppression of RNA silencing and pathogenesis. Mol Plant-Microbe Interact 26:306–318

López C, Cervera M, Fagoaga C et al (2010) Accumulation of transgene-derived siRNAs is not sufficient for RNAi-mediated protection against Citrus tristeza virus (CTV) in transgenic Mexican lime. Mol Plant Pathol 11:33–41

Chiba M, Reed JC, Prokhnevsky AI et al (2006) Diverse suppressors of RNA silencing enhance agroinfection by a viral replicon. Virology 346:7–14

Albiach-Marti MR, Robertson C, Gowda S et al (2010) The pathogenicity determinant of Citrus tristeza virus causing the seedling yellows syndrome maps at the 3′-terminal region of the viral genome. Mol Plant Pathol 11:55–67

Fagoaga C, Pensabene-Bellavia G, Moreno P et al (2011) Ectopic expression of the p23 silencing suppressor of Citrus tristeza virus differentially modifies viral accumulation and tropism in two transgenic woody hosts. Mol Plant Pathol 12:898–910

Sambade A, López C, Rubio L et al (2003) Polymorphism of a specific region in gene p23 of Citrus tristeza virus allows discrimination between mild and severe isolates. Arch Virol 148:2325–2340

Ruiz-Ruiz S, Spàno R, Navarro L et al (2018) Citrus tristeza virus co-opts glyceraldehyde 3-phosphate dehydrogenase for its infectious cycle by interacting with the viral-encoded protein p23. Plant Mol Biol 98:363–373




This item appears in the following Collection(s)

Show full item record