- -

Regioselective generation and reactivity control of subnanometric platinum clusters in zeolites for high-temperature catalysis

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Regioselective generation and reactivity control of subnanometric platinum clusters in zeolites for high-temperature catalysis

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Liu, Lichen es_ES
dc.contributor.author Lopez-Haro, Miguel es_ES
dc.contributor.author Lopes, Christian W. es_ES
dc.contributor.author Li, Chengeng es_ES
dc.contributor.author Concepción Heydorn, Patricia es_ES
dc.contributor.author Simonelli, Laura es_ES
dc.contributor.author Calvino, Jose J. es_ES
dc.contributor.author Corma Canós, Avelino es_ES
dc.date.accessioned 2021-01-21T04:31:42Z
dc.date.available 2021-01-21T04:31:42Z
dc.date.issued 2019-08 es_ES
dc.identifier.issn 1476-1122 es_ES
dc.identifier.uri http://hdl.handle.net/10251/159599
dc.description.abstract [EN] Subnanometric metal species (single atoms and clusters) have been demonstrated to be unique compared with their nanoparticulate counterparts. However, the poor stabilization of subnanometric metal species towards sintering at high temperature (>500 degrees C) under oxidative or reductive reaction conditions limits their catalytic application. Zeolites can serve as an ideal support to stabilize subnanometric metal catalysts, but it is challenging to localize subnanometric metal species on specific sites and modulate their reactivity. We have achieved a very high preference for localization of highly stable subnanometric Pt and PtSn clusters in the sinusoidal channels of purely siliceous MFI zeolite, as revealed by atomically resolved electron microscopy combining high-angle annular dark-field and integrated differential phase contrast imaging techniques. These catalysts show very high stability, selectivity and activity for the industrially important dehydrogenation of propane to form propylene. This stabilization strategy could be extended to other crystalline porous materials. es_ES
dc.description.sponsorship This work has been supported by the European Union through the European Research Council (grant ERC-AdG-2014-671093, SynCatMatch) and the Spanish government through the Severo Ochoa Programme (SEV-2016-0683). L.L. thanks ITQ for providing a contract. The authors also thank the Microscopy Service of UPV for the TEM and STEM measurements. The XAS measurements were carried out in CLAESS beamline at the ALBA synchrotron. HR STEM measurements were performed at DME-UCA in Cadiz University with financial support from FEDER/MINECO (MAT2017-87579-R and MAT2016-81118-P). A relevant patent application (European patent application No. 19382024.8) has been presented. C.W.L. thanks CAPES (Science without Frontiers-Process no. 13191/13-6) for a predoctoral fellowship. es_ES
dc.language Inglés es_ES
dc.publisher Nature Publishing Group es_ES
dc.relation.ispartof Nature Materials es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title Regioselective generation and reactivity control of subnanometric platinum clusters in zeolites for high-temperature catalysis es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1038/s41563-019-0412-6 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CAPES//13191%2F13-6/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/671093/EU/MATching zeolite SYNthesis with CATalytic activity/
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//SEV-2016-0683/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MAT2017-87579-R/ES/FASES 2D ULTRAFINAS SOBRE OXIDOS CON MORFOLOGIA CONTROLADA: PLATAFORMA DE NANOCATALIZADORES MULTICOMPONENTE CON APLICACIONES EN PROTECCION DEL MEDIO AMBIENTE/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MAT2016-81118-P/ES/DISEÑO Y CARACTERIZACION AVANZADA DE CATALIZADORES CON NANOINTERFASES MODELO AU%2F%2FCEO2/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Liu, L.; Lopez-Haro, M.; Lopes, CW.; Li, C.; Concepción Heydorn, P.; Simonelli, L.; Calvino, JJ.... (2019). Regioselective generation and reactivity control of subnanometric platinum clusters in zeolites for high-temperature catalysis. Nature Materials. 18(8):866-875. https://doi.org/10.1038/s41563-019-0412-6 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1038/s41563-019-0412-6 es_ES
dc.description.upvformatpinicio 866 es_ES
dc.description.upvformatpfin 875 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 18 es_ES
dc.description.issue 8 es_ES
dc.identifier.pmid 31263227 es_ES
dc.relation.pasarela S\410698 es_ES
dc.contributor.funder European Research Council es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Coordenaçao de Aperfeiçoamento de Pessoal de Nível Superior, Brasil es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder European Commission
dc.description.references Liu, L. & Corma, A. Metal catalysts for heterogeneous catalysis: from single atoms to nanoclusters and nanoparticles. Chem. Rev. 118, 4981–5079 (2018). es_ES
dc.description.references Gallego, E. M. et al. “Ab initio” synthesis of zeolites for preestablished catalytic reactions. Science 355, 1051–1054 (2017). es_ES
dc.description.references Kosinov, N., Liu, C., Hensen, E. J. M. & Pidko, E. A. Engineering of transition metal catalysts confined in zeolites. Chem. Mater. 30, 3177–3198 (2018). es_ES
dc.description.references Ortalan, V., Uzun, A., Gates, B. C. & Browning, N. D. Direct imaging of single metal atoms and clusters in the pores of dealuminated HY zeolite. Nat. Nanotechnol. 5, 506–510 (2010). es_ES
dc.description.references Li, C. et al. Selective introduction of acid sites in different confined positions in ZSM-5 and its catalytic implications. ACS Catal. 8, 7688–7697 (2018). es_ES
dc.description.references Knott, B. C. et al. Consideration of the aluminum distribution in zeolites in theoretical and experimental catalysis research. ACS Catal. 8, 770–784 (2017). es_ES
dc.description.references Yokoi, T., Mochizuki, H., Namba, S., Kondo, J. N. & Tatsumi, T. Control of the Al distribution in the framework of ZSM-5 zeolite and its evaluation by solid-state NMR technique and catalytic properties. J. Phys. Chem. C 119, 15303–15315 (2015). es_ES
dc.description.references Goel, S., Zones, S. I. & Iglesia, E. Encapsulation of metal clusters within MFI via interzeolite transformations and direct hydrothermal syntheses and catalytic consequences of their confinement. J. Am. Chem. Soc. 136, 15280–15290 (2014). es_ES
dc.description.references Wang, N. et al. In situ confinement of ultrasmall Pd clusters within nanosized silicalite-1 zeolite for highly efficient catalysis of hydrogen generation. J. Am. Chem. Soc. 138, 7484–7487 (2016). es_ES
dc.description.references Iida, T., Zanchet, D., Ohara, K., Wakihara, T. & Roman-Leshkov, Y. Concerted bimetallic nanocluster synthesis and encapsulation via induced zeolite framework demetallation for shape and substrate selective heterogeneous catalysis. Angew. Chem. Int. Ed. 57, 6454–6458 (2018). es_ES
dc.description.references Zhang, J. et al. Sinter-resistant metal nanoparticle catalysts achieved by immobilization within zeolite crystals via seed-directed growth. Nat. Catal. 1, 540–546 (2018). es_ES
dc.description.references Campbell, C. T., Parker, S. C. & Starr, D. E. The effect of size-dependent nanoparticle energetics on catalyst sintering. Science 298, 811–814 (2002). es_ES
dc.description.references Flytzani-Stephanopoulos, M. & Gates, B. C. Atomically dispersed supported metal catalysts. Annu. Rev. Chem. Biomol. Eng. 3, 545–574 (2012). es_ES
dc.description.references Liu, L. et al. Generation of subnanometric platinum with high stability during transformation of a 2D zeolite into 3D. Nat. Mater. 16, 132–138 (2017). es_ES
dc.description.references Liu, L. et al. Evolution and stabilization of subnanometric metal species in confined space by in situ TEM. Nat. Commun. 9, 574 (2018). es_ES
dc.description.references Xiong, H. et al. Thermally stable and regenerable platinum-tin clusters for propane dehydrogenation prepared by atom trapping on ceria. Angew. Chem. Int. Ed. 56, 8986–8991 (2017). es_ES
dc.description.references Sattler, J. J., Ruiz-Martinez, J., Santillan-Jimenez, E. & Weckhuysen, B. M. Catalytic dehydrogenation of light alkanes on metals and metal oxides. Chem. Rev. 114, 10613–10653 (2014). es_ES
dc.description.references Zhu, J. et al. Size-dependent reaction mechanism and kinetics for propane dehydrogenation over Pt catalysts. ACS Catal. 5, 6310–6319 (2015). es_ES
dc.description.references Yang, M. et al. A common single-site Pt(II)–O(OH)x– species stabilized by sodium on “active” and “inert” supports catalyzes the water-gas shift reaction. J. Am. Chem. Soc. 137, 3470–3473 (2015). es_ES
dc.description.references Yang, M. et al. Catalytically active Au-O(OH)x- species stabilized by alkali ions on zeolites and mesoporous oxides. Science 346, 1498–1501 (2014). es_ES
dc.description.references Zhai, Y. et al. Alkali-stabilized Pt-OHx species catalyze low-temperature water-gas shift reactions. Science 329, 1633–1636 (2010). es_ES
dc.description.references Lazic, I., Bosch, E. G. T. & Lazar, S. Phase contrast STEM for thin samples: integrated differential phase contrast. Ultramicroscopy 160, 265–280 (2016). es_ES
dc.description.references Yucelen, E., Lazic, I. & Bosch, E. G. T. Phase contrast scanning transmission electron microscopy imaging of light and heavy atoms at the limit of contrast and resolution. Sci. Rep. 8, 2676 (2018). es_ES
dc.description.references Van Koningsveld, H. On the location and disorder of the tetrapropylammonium (TPA) ion in zeolite ZSM‐5 with improved framework accuracy. Acta Crystallogr. B 43, 127–132 (1987). es_ES
dc.description.references Dib, E., Grand, J., Mintova, S. & Fernandez, C. Structure-directing agent governs the location of silanol defects in zeolites. Chem. Mater. 27, 7577–7579 (2015). es_ES
dc.description.references Denayer, J. F., De Meyer, K., Martens, J. A. & Baron, G. V. Molecular competition effects in liquid-phase adsorption of long-chain n-alkane mixtures in ZSM-5 zeolite pores. Angew. Chem. Int. Ed. 42, 2774–2777 (2003). es_ES
dc.description.references Grand, J. et al. One-pot synthesis of silanol-free nanosized MFI zeolite. Nat. Mater. 16, 1010–1015 (2017). es_ES
dc.description.references de Graaf, J., van Dillen, A. J., de Jong, K. P. & Koningsberger, D. C. Preparation of highly dispersed Pt particles in zeolite Y with a narrow particle size distribution: characterization by hydrogen chemisorption, TEM, EXAFS spectroscopy, and particle modeling. J. Catal. 203, 307–321 (2001). es_ES
dc.description.references Bare, S. R. et al. Uniform catalytic site in Sn-beta-zeolite determined using X-ray absorption fine structure. J. Am. Chem. Soc. 127, 12924–12932 (2005). es_ES
dc.description.references Hammond, C. et al. Identification of active and spectator Sn sites in Sn-beta following solid-state stannation, and consequences for Lewis acid catalysis. ChemCatChem 7, 3322–3331 (2015). es_ES
dc.description.references Stakheev, A. Y., Shpiro, E. S., Jaeger, N. I. & Schulz-Ekloff, G. Electronic state and location of Pt metal clusters in KL zeolite: FTIR study of CO chemisorption. Catal. Lett. 32, 147–158 (1995). es_ES
dc.description.references Huang, H. et al. Effects of heat treatment atmosphere on the structure and activity of Pt3Sn nanoparticle electrocatalysts: a characterization case study. Faraday Discuss. 208, 555–573 (2018). es_ES
dc.description.references Alexeev, O. S. & Gates, B. C. Supported bimetallic cluster catalysts. Ind. Eng. Chem. Res. 42, 1571–1587 (2003). es_ES
dc.description.references Sankar, M. et al. Designing bimetallic catalysts for a green and sustainable future. Chem. Soc. Rev. 41, 8099–8139 (2012). es_ES
dc.description.references Ferrando, R., Jellinek, J. & Johnston, R. L. Nanoalloys: from theory to applications of alloy clusters and nanoparticles. Chem. Rev. 108, 845–910 (2008). es_ES
dc.description.references Zhu, H. et al. Sn surface-enriched Pt–Sn bimetallic nanoparticles as a selective and stable catalyst for propane dehydrogenation. J. Catal. 320, 52–62 (2014). es_ES
dc.description.references Wu, J., Peng, Z. & Bell, A. T. Effects of composition and metal particle size on ethane dehydrogenation over PtxSn100-x/Mg(Al)O (70⩽x⩽100). J. Catal. 311, 161–168 (2014). es_ES
dc.description.references López-Haro, M. et al. A macroscopically relevant 3D-metrology approach for nanocatalysis research. Part. Part. Syst. Charact. 35, 1700343 (2018). es_ES
dc.description.references Kirkland, E. J. Advanced Computing in Electron Microscopy (Springer, 2010). es_ES
dc.description.references Bernal, S. et al. The interpretation of HREM images of supported metal catalysts using image simulation: profile view images. Ultramicroscopy 72, 135–164 (1998). es_ES
dc.description.references Simonelli, L. et al. CLÆSS: the hard X-ray absorption beamline of the ALBA CELLS synchrotron. Cogent Phys. 3, 1231987 (2016). es_ES
dc.description.references Guilera, G., Rey, F., Hernández-Fenollosa, J. & Cortés-Vergaz, J. J. One body, many heads; the Cerberus of catalysis. A new multipurpose in-situ cell for XAS at ALBA. J. Phys. Conf. Ser. 430, 012057 (2013). es_ES
dc.description.references Ravel, B. & Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 12, 537–541 (2005). es_ES
dc.description.references Yin, F., Ji, S., Wu, P., Zhao, F. & Li, C. Deactivation behavior of Pd-based SBA-15 mesoporous silica catalysts for the catalytic combustion of methane. J. Catal. 257, 108–116 (2008). es_ES
dc.description.references Allian, A. D. et al. Chemisorption of CO and mechanism of CO oxidation on supported platinum nanoclusters. J. Am. Chem. Soc. 133, 4498–4517 (2011). es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem