Mostrar el registro sencillo del ítem
dc.contributor.author | He, Jinbao | es_ES |
dc.contributor.author | Anouar, Aicha | es_ES |
dc.contributor.author | Primo Arnau, Ana Maria | es_ES |
dc.contributor.author | García Gómez, Hermenegildo | es_ES |
dc.date.accessioned | 2021-01-21T04:31:49Z | |
dc.date.available | 2021-01-21T04:31:49Z | |
dc.date.issued | 2019-06 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/159602 | |
dc.description.abstract | [EN] Pyrolysis of filmogenic natural polymers gives rise to the formation of films of few-layers defective, undoped, and doped graphenes with low electrical conductivity (3000 to 5000 ohm /sq). For the sake of valorization of biomass wastes, it would be of interest to decrease the density of structural defects in order to increase the conductivity of the resulting few-layers graphene samples. In the present study, analytical and spectroscopic evidence is provided showing that by performing the pyrolysis at the optimal temperature (1100 degrees C), under a low percentage of H-2, a significant decrease in the density of defects related to the presence of residual oxygen can be achieved. This improvement in the quality of the resulting few-layers defective graphene is reflected in a decrease by a factor of about 3 or 5 for alginic acid and chitosan, respectively, of the electrical resistance. Under optimal conditions, few-layers defective graphene films with a resistance of 1000 ohm /sq were achieved. The electrode made of high-quality graphene prepared at 1100 degrees C under Ar/H-2 achieved a H-2 production of 3.62 mu mol with a positive applied bias of 1.1 V under LED illumination for 16 h. | es_ES |
dc.description.sponsorship | Financial support by the Spanish Ministry of Economy and Competitiveness (Severo Ochoa and RTI2018-098237-B-C21) and Generalitat Valencia (Prometeo 2017/083) is gratefully acknowledged. J. H. thanks the Chinese Scholarship Council (CSC) for supporting his doctoral stage at Valencia. A. P. also acknowledges the Spanish Ministry of Economy and Competitiveness for a Ramon y Cajal research associate contract. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Nanomaterials | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Defective graphene | es_ES |
dc.subject | Chitosan pyrolysis | es_ES |
dc.subject | Alginate pyrolysis | es_ES |
dc.subject | Graphene from biomass | es_ES |
dc.subject.classification | QUIMICA ORGANICA | es_ES |
dc.title | Quality Improvement of Few-Layers Defective Graphene from Biomass and Application for H-2 Generation | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/nano9060895 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEO%2F2017%2F083/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-098237-B-C21/ES/HETEROUNIONES DE GRAFENO CON CONFIGURACION CONTROLADA. SINTESIS Y APLICACIONES COMO SOPORTE EN CATALISIS Y EN ELECTRODOS/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Química - Departament de Química | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química | es_ES |
dc.description.bibliographicCitation | He, J.; Anouar, A.; Primo Arnau, AM.; García Gómez, H. (2019). Quality Improvement of Few-Layers Defective Graphene from Biomass and Application for H-2 Generation. Nanomaterials. 9(6):1-15. https://doi.org/10.3390/nano9060895 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/nano9060895 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 15 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 9 | es_ES |
dc.description.issue | 6 | es_ES |
dc.identifier.eissn | 2079-4991 | es_ES |
dc.identifier.pmid | 31248147 | es_ES |
dc.identifier.pmcid | PMC6632024 | es_ES |
dc.relation.pasarela | S\393688 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | China Scholarship Council | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Bonaccorso, F., Lombardo, A., Hasan, T., Sun, Z., Colombo, L., & Ferrari, A. C. (2012). Production and processing of graphene and 2d crystals. Materials Today, 15(12), 564-589. doi:10.1016/s1369-7021(13)70014-2 | es_ES |
dc.description.references | Chen, D., Feng, H., & Li, J. (2012). Graphene Oxide: Preparation, Functionalization, and Electrochemical Applications. Chemical Reviews, 112(11), 6027-6053. doi:10.1021/cr300115g | es_ES |
dc.description.references | Luo, B., Liu, S., & Zhi, L. (2011). Chemical Approaches toward Graphene-Based Nanomaterials and their Applications in Energy-Related Areas. Small, 8(5), 630-646. doi:10.1002/smll.201101396 | es_ES |
dc.description.references | Machado, B. F., & Serp, P. (2012). Graphene-based materials for catalysis. Catal. Sci. Technol., 2(1), 54-75. doi:10.1039/c1cy00361e | es_ES |
dc.description.references | Lavorato, C., Primo, A., Molinari, R., & García, H. (2014). Natural Alginate as a Graphene Precursor and Template in the Synthesis of Nanoparticulate Ceria/Graphene Water Oxidation Photocatalysts. ACS Catalysis, 4(2), 497-504. doi:10.1021/cs401068m | es_ES |
dc.description.references | Primo, A., Atienzar, P., Sanchez, E., Delgado, J. M., & García, H. (2012). From biomass wastes to large-area, high-quality, N-doped graphene: catalyst-free carbonization of chitosan coatings on arbitrary substrates. Chemical Communications, 48(74), 9254. doi:10.1039/c2cc34978g | es_ES |
dc.description.references | Primo, A., Sánchez, E., Delgado, J. M., & García, H. (2014). High-yield production of N-doped graphitic platelets by aqueous exfoliation of pyrolyzed chitosan. Carbon, 68, 777-783. doi:10.1016/j.carbon.2013.11.068 | es_ES |
dc.description.references | Dhakshinamoorthy, A., Latorre-Sanchez, M., Asiri, A. M., Primo, A., & Garcia, H. (2015). Sulphur-doped graphene as metal-free carbocatalysts for the solventless aerobic oxidation of styrenes. Catalysis Communications, 65, 10-13. doi:10.1016/j.catcom.2015.02.018 | es_ES |
dc.description.references | Dhakshinamoorthy, A., Primo, A., Concepcion, P., Alvaro, M., & Garcia, H. (2013). Doped Graphene as a Metal-Free Carbocatalyst for the Selective Aerobic Oxidation of Benzylic Hydrocarbons, Cyclooctane and Styrene. Chemistry - A European Journal, 19(23), 7547-7554. doi:10.1002/chem.201300653 | es_ES |
dc.description.references | Latorre-Sánchez, M., Primo, A., Atienzar, P., Forneli, A., & García, H. (2014). p-n Heterojunction of Doped Graphene Films Obtained by Pyrolysis of Biomass Precursors. Small, 11(8), 970-975. doi:10.1002/smll.201402278 | es_ES |
dc.description.references | Primo, A., Esteve-Adell, I., Blandez, J. F., Dhakshinamoorthy, A., Álvaro, M., Candu, N., … García, H. (2015). High catalytic activity of oriented 2.0.0 copper(I) oxide grown on graphene film. Nature Communications, 6(1). doi:10.1038/ncomms9561 | es_ES |
dc.description.references | Primo, A., Esteve-Adell, I., Coman, S. N., Candu, N., Parvulescu, V. I., & Garcia, H. (2015). One-Step Pyrolysis Preparation of 1.1.1 Oriented Gold Nanoplatelets Supported on Graphene and Six Orders of Magnitude Enhancement of the Resulting Catalytic Activity. Angewandte Chemie International Edition, 55(2), 607-612. doi:10.1002/anie.201508908 | es_ES |
dc.description.references | Li, X., Zhu, Y., Cai, W., Borysiak, M., Han, B., Chen, D., … Ruoff, R. S. (2009). Transfer of Large-Area Graphene Films for High-Performance Transparent Conductive Electrodes. Nano Letters, 9(12), 4359-4363. doi:10.1021/nl902623y | es_ES |
dc.description.references | Kim, K. S., Zhao, Y., Jang, H., Lee, S. Y., Kim, J. M., Kim, K. S., … Hong, B. H. (2009). Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature, 457(7230), 706-710. doi:10.1038/nature07719 | es_ES |
dc.description.references | Sun, H., Chen, D., Wu, Y., Yuan, Q., Guo, L., Dai, D., … Lin, C.-T. (2017). High quality graphene films with a clean surface prepared by an UV/ozone assisted transfer process. Journal of Materials Chemistry C, 5(8), 1880-1884. doi:10.1039/c6tc05505b | es_ES |
dc.description.references | Prudkovskiy, V. S., Katin, K. P., Maslov, M. M., Puech, P., Yakimova, R., & Deligeorgis, G. (2016). Efficient cleaning of graphene from residual lithographic polymers by ozone treatment. Carbon, 109, 221-226. doi:10.1016/j.carbon.2016.08.013 | es_ES |
dc.description.references | Reina, A., Jia, X., Ho, J., Nezich, D., Son, H., Bulovic, V., … Kong, J. (2009). Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition. Nano Letters, 9(1), 30-35. doi:10.1021/nl801827v | es_ES |
dc.description.references | Li, X., Cai, W., An, J., Kim, S., Nah, J., Yang, D., … Ruoff, R. S. (2009). Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils. Science, 324(5932), 1312-1314. doi:10.1126/science.1171245 | es_ES |
dc.description.references | Cançado, L. G., Jorio, A., Ferreira, E. H. M., Stavale, F., Achete, C. A., Capaz, R. B., … Ferrari, A. C. (2011). Quantifying Defects in Graphene via Raman Spectroscopy at Different Excitation Energies. Nano Letters, 11(8), 3190-3196. doi:10.1021/nl201432g | es_ES |
dc.description.references | Eckmann, A., Felten, A., Mishchenko, A., Britnell, L., Krupke, R., Novoselov, K. S., & Casiraghi, C. (2012). Probing the Nature of Defects in Graphene by Raman Spectroscopy. Nano Letters, 12(8), 3925-3930. doi:10.1021/nl300901a | es_ES |
dc.description.references | Ferrari, A. C., & Basko, D. M. (2013). Raman spectroscopy as a versatile tool for studying the properties of graphene. Nature Nanotechnology, 8(4), 235-246. doi:10.1038/nnano.2013.46 | es_ES |
dc.description.references | Pei, S., & Cheng, H.-M. (2012). The reduction of graphene oxide. Carbon, 50(9), 3210-3228. doi:10.1016/j.carbon.2011.11.010 | es_ES |
dc.description.references | Stankovich, S., Dikin, D. A., Piner, R. D., Kohlhaas, K. A., Kleinhammes, A., Jia, Y., … Ruoff, R. S. (2007). Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon, 45(7), 1558-1565. doi:10.1016/j.carbon.2007.02.034 | es_ES |
dc.description.references | Shin, H., Kim, K. K., Benayad, A., Yoon, S., Park, H. K., Jung, I., … Lee, Y. H. (2009). Efficient Reduction of Graphite Oxide by Sodium Borohydride and Its Effect on Electrical Conductance. Advanced Functional Materials, 19(12), 1987-1992. doi:10.1002/adfm.200900167 | es_ES |
dc.description.references | Fernández-Merino, M. J., Guardia, L., Paredes, J. I., Villar-Rodil, S., Solís-Fernández, P., Martínez-Alonso, A., & Tascón, J. M. D. (2010). Vitamin C Is an Ideal Substitute for Hydrazine in the Reduction of Graphene Oxide Suspensions. The Journal of Physical Chemistry C, 114(14), 6426-6432. doi:10.1021/jp100603h | es_ES |
dc.description.references | Garcia, A., Albero, J., & García, H. (2017). Multilayer N-doped Graphene Films as Photoelectrodes for H2 Evolution. ChemPhotoChem, 1(9), 388-392. doi:10.1002/cptc.201700049 | es_ES |