- -

Mixed proton and electron conducting double perovskite anodes for stable and efficient tubular proton ceramic electrolysers.

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Mixed proton and electron conducting double perovskite anodes for stable and efficient tubular proton ceramic electrolysers.

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Vøllestad, Einar es_ES
dc.contributor.author Strandbakke, Ragnar es_ES
dc.contributor.author Tarach, Mateusz es_ES
dc.contributor.author Catalán-Martínez, David es_ES
dc.contributor.author Fontaine, Marie-Laure es_ES
dc.contributor.author Beeaff, Dustin es_ES
dc.contributor.author Clark, Daniel R. es_ES
dc.contributor.author Serra Alfaro, José Manuel es_ES
dc.contributor.author Norby, Truls es_ES
dc.date.accessioned 2021-01-21T04:31:57Z
dc.date.available 2021-01-21T04:31:57Z
dc.date.issued 2019-07 es_ES
dc.identifier.issn 1476-1122 es_ES
dc.identifier.uri http://hdl.handle.net/10251/159606
dc.description.abstract [EN] Hydrogen production from water electrolysis is a key enabling energy storage technology for the large-scale deployment of intermittent renewable energy sources. Proton ceramic electrolysers (PCEs) can produce dry pressurized hydrogen directly from steam, avoiding major parts of cost-driving downstream separation and compression. However, the development of PCEs has suffered from limited electrical efficiency due to electronic leakage and poor electrode kinetics. Here, we present the first fully operational BaZrO3-based tubular PCE, with 10 cm(2) active area and a hydrogen production rate above 15 Nml min(-1). The novel steam anode Ba1-xGd0.8La0.2+xCo2O6-delta exhibits mixed p-type electronic and protonic conduction and low activation energy for water splitting, enabling total polarization resistances below 1 Omega cm(2) at 600 degrees C and Faradaic efficiencies close to 100% at high steam pressures. These tubular PCEs are mechanically robust, tolerate high pressures, allow improved process integration and offer scale-up modularity. es_ES
dc.description.sponsorship The work leading to these results has received funding from the Research Council of Norway (grant 236828) and from the European Union's Seventh Framework Programme (FP7/2007-2013) for the Fuel Cells and Hydrogen Joint Technology Initiative under grant agreement 621244 ('ELECTRA') and Fuel Cells and Hydrogen 2 Joint Undertaking under grant agreement 779486 ('GAMER'). This Joint Undertaking receives support from the European Union's Horizon 2020 research and innovation programme, Hydrogen Europe and Hydrogen Europe research. es_ES
dc.language Inglés es_ES
dc.publisher Nature Publishing Group es_ES
dc.relation.ispartof Nature Materials es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Electrolysis es_ES
dc.subject Protonic ceramic conductors es_ES
dc.subject Energy storage es_ES
dc.title Mixed proton and electron conducting double perovskite anodes for stable and efficient tubular proton ceramic electrolysers. es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1038/s41563-019-0388-2 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/FP7/621244/EU/High temperature electrolyser with novel proton ceramic tubular modules of superior efficiency, robustness, and lifetime economy/
dc.relation.projectID info:eu-repo/grantAgreement/RCN//236828/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/779486/EU/Game changer in high temperature steam electrolysers with novel tubular cells and stacks geometry for pressurized hydrogen production/
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.description.bibliographicCitation Vøllestad, E.; Strandbakke, R.; Tarach, M.; Catalán-Martínez, D.; Fontaine, M.; Beeaff, D.; Clark, DR.... (2019). Mixed proton and electron conducting double perovskite anodes for stable and efficient tubular proton ceramic electrolysers. Nature Materials. 18(7):752-759. https://doi.org/10.1038/s41563-019-0388-2 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1038/s41563-019-0388-2 es_ES
dc.description.upvformatpinicio 752 es_ES
dc.description.upvformatpfin 759 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 18 es_ES
dc.description.issue 7 es_ES
dc.identifier.pmid 31160804 es_ES
dc.relation.pasarela S\390171 es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Research Council of Norway es_ES
dc.description.references Hauch, A., Ebbesen, S. D., Jensen, S. H. & Mogensen, M. Highly efficient high temperature electrolysis. J. Mater. Chem. 18, 2331–2340 (2008). es_ES
dc.description.references Laguna-Bercero, M. Recent advances in high temperature electrolysis using solid oxide fuel cells: a review. J. Power Sources 203, 4–16 (2012). es_ES
dc.description.references Ebbesen, S. D., Jensen, S. H., Hauch, A. & Mogensen, M. B. High temperature electrolysis in alkaline cells, solid proton conducting cells and solid oxide cells. Chem. Rev. 114, 10697–10734 (2014). es_ES
dc.description.references Knibbe, R., Traulsen, M. L., Hauch, A., Ebbesen, S. D. & Mogensen, M. Solid oxide electrolysis cells: degradation at high current densities. J. Electrochem. Soc. 157, B1209–B1217 (2010). es_ES
dc.description.references Hauch, A., Jensen, S. H., Ramousse, S. & Mogensen, M. Performance and durability of solid oxide electrolysis cells. J. Electrochem. Soc. 153, A1741–A1747 (2006). es_ES
dc.description.references Wachsman, E. D. & Lee, K. T. Lowering the temperature of solid oxide fuel cells. Science 334, 935–939 (2011). es_ES
dc.description.references Ishihara, T., Jirathiwathanakul, N. & Zhong, H. Intermediate temperature solid oxide electrolysis cell using LaGaO3 based perovskite electrolyte. Energy Environ. Sci. 3, 665–672 (2010). es_ES
dc.description.references Iwahara, H., Uchida, H. & Maeda, N. High temperature fuel and steam electrolysis cells using proton conductive solid electrolytes. J. Power Sources 7, 293–301 (1982). es_ES
dc.description.references Norby, T. in Perovskite Oxide for Solid Oxide Fuel Cells (ed. Ishihara, T.) 217–241 (Springer, 2009). es_ES
dc.description.references Tong, J., Clark, D., Bernau, L., Sanders, M. & O’Hayre, R. Solid-state reactive sintering mechanism for large-grained yttrium-doped barium zirconate proton conducting ceramics. J. Mater. Chem. 20, 6333–6341 (2010). es_ES
dc.description.references Iwahara, H., Yajima, T., Hibino, T., Ozaki, K. & Suzuki, H. Protonic conduction in calcium, strontium and barium zirconates. Solid State Ion. 61, 65–69 (1993). es_ES
dc.description.references Duan, C. et al. Readily processed protonic ceramic fuel cells with high performance at low temperatures. Science 349, 1321–1326 (2015). es_ES
dc.description.references Choi, S. et al. Exceptional power density and stability at intermediate temperatures in protonic ceramic fuel cells. Nat. Energy 3, 202–210 (2018). es_ES
dc.description.references An, H. et al. A 5 × 5 cm2 protonic ceramic fuel cell with a power density of 1.3 W cm–2 at 600 °C. Nat. Energy 3, 870–875 (2018). es_ES
dc.description.references Duan, C. et al. Highly efficient reversible protonic ceramic electrochemical cells for power generation and fuel production. Nat. Energy 4, 230–240 (2019). es_ES
dc.description.references Morejudo, S. et al. Direct conversion of methane to aromatics in a catalytic co-ionic membrane reactor. Science 353, 563–566 (2016). es_ES
dc.description.references Malerød-Fjeld, H. et al. Thermo-electrochemical production of compressed hydrogen from methane with near-zero energy loss. Nat. Energy 2, 923–931 (2017). es_ES
dc.description.references Babiniec, S. M., Ricote, S. & Sullivan, N. P. Characterization of ionic transport through BaCe0.2Zr0.7Y0.1O3−δ membranes in galvanic and electrolytic operation. Int. J. Hydrogen Energy 40, 9278–9286 (2015). es_ES
dc.description.references Bi, L., Shafi, S. P. & Traversa, E. Y-doped BaZrO3 as a chemically stable electrolyte for proton-conducting solid oxide electrolysis cells (SOECs). J. Mater. Chem. A 3, 5815–5819 (2015). es_ES
dc.description.references Li, S. & Xie, K. Composite oxygen electrode based on LSCF and BSCF for steam electrolysis in a proton-conducting solid oxide electrolyzer. J. Electrochem. Soc. 160, F224–F233 (2013). es_ES
dc.description.references Matsumoto, H., Sakai, T. & Okuyama, Y. Proton-conducting oxide and applications to hydrogen energy devices. Pure Appl. Chem. 85, 427–435 (2012). es_ES
dc.description.references Gan, Y. et al. Composite oxygen electrode based on LSCM for steam electrolysis in a proton conducting solid oxide electrolyzer. J. Electrochem. Soc. 159, F763–F767 (2012). es_ES
dc.description.references Shang, M., Tong, J. & O’Hayre, R. A promising cathode for intermediate temperature protonic ceramic fuel cells: BaCo0.4Fe0.4Zr0.2O3−δ. RSC Adv. 3, 15769–15775 (2013). es_ES
dc.description.references Strandbakke, R. et al. Gd- and Pr-based double perovskite cobaltites as oxygen electrodes for proton ceramic fuel cells and electrolyser cells. Solid State Ion. 278, 120–132 (2015). es_ES
dc.description.references Poetzsch, D., Merkle, R. & Maier, J. Proton conductivity in mixed-conducting BSFZ perovskite from thermogravimetric relaxation. Phys. Chem. Chem. Phys. 16, 16446–16453 (2014). es_ES
dc.description.references Zohourian, R., Merkle, R. & Maier, J. Proton uptake into the protonic cathode material BaCo0.4Fe0.4Zr0.2O3−δ and comparison to protonic electrolyte materials. Solid State Ion. 299, 64–69 (2017). es_ES
dc.description.references Strandbakke, R., Vøllestad, E., Robinson, S. A., Fontaine, M.-L. & Norby, T. Ba0.5Gd0.8La0.7Co2O6−δ infiltrated in porous BaZr0.7Ce0.2Y0.1O3 backbones as electrode material for proton ceramic electrolytes. J. Electrochem. Soc. 164, F196–F202 (2017). es_ES
dc.description.references Vollestad, E., Schrade, M., Segalini, J., Strandbakke, R. & Norby, T. Relating defect chemistry and electronic transport in the double perovsksite Ba1−xGd0.8La0.2+xCo2O6−δ(BGLC). J. Mater. Chem. A 5, 15743–15751 (2017). es_ES
dc.description.references Brieuc, F., Dezanneau, G., Hayoun, M. & Dammak, H. Proton diffusion mechanisms in the double perovskite cathode material GdBaCo2O5.5: a molecular dynamics study. Solid State Ion. 309, 187–191 (2017). es_ES
dc.description.references Mokkelbost, T. et al. High-temperature proton-conducting lanthanum ortho-niobate-based materials. Part II: sintering properties and solubility of alkaline earth oxides. J. Am. Ceram. Soc. 91, 879–886 (2008). es_ES
dc.description.references Tong, J., Clark, D., Hoban, M. & O’Hayre, R. Cost-effective solid-state reactive sintering method for high conductivity proton conducting yttrium-doped barium zirconium ceramics. Solid State Ion. 181, 496–503 (2010). es_ES
dc.description.references Kwon, O. H. & Choi, G. M. Electrical conductivity of thick film YSZ. Solid State Ion. 177, 3057–3062 (2006). es_ES
dc.description.references Timakul, P., Jinawath, S. & Aungkavattana, P. Fabrication of electrolyte materials for solid oxide fuel cells by tape-casting. Ceram. Int. 34, 867–871 (2008). es_ES
dc.description.references Kim, S. J., Kim, K. J., Dayaghi, A. M. & Choi, G. M. Polarization and stability of La2NiO4+δ in comparison with La0.6Sr0.4Co0.2Fe0.8O3−δ as air electrode of solid oxide electrolysis cell. Int. J. Hydrogen Energy 41, 14498–14506 (2016). es_ES
dc.description.references Jacobsen, T., Chatzichristodoulou, C. & Mogensen, M. B. Fermi potential across working solid oxide cells with zirconia or ceria electrolytes. ECS Trans. 61, 203–214 (2014). es_ES
dc.description.references Zhu, H. & Kee, R. J. Membrane polarization in mixed-conducting ceramic fuel cells and electrolyzers. Int. J. Hydrogen Energy 41, 2931–2943 (2016). es_ES
dc.description.references Kreuer, K. D. Proton-conducting oxides. Annu. Rev. Mater. Res. 33, 333–359 (2003). es_ES
dc.description.references Nikodemski, S., Tong, J. & O’Hayre, R. Solid-state reactive sintering mechanism for proton conducting ceramics. Solid State Ion. 253, 201–210 (2013). es_ES
dc.description.references Ricote, S., Manerbino, A., Sullivan, N. P. & Coors, W. G. Preparation of dense mixed electron- and proton-conducting ceramic composite materials using solid-state reactive sintering: BaCe0.8Y0.1M0.1O3−δ–Ce0.8Y0.1M0.1O2−δ (M = Y, Yb, Er, Eu). J. Mater. Sci. 49, 4332–4340 (2014). es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem