- -

Palladium Supported on Porous Chitosan-Graphene Oxide Aerogels as Highly Efficient Catalysts for Hydrogen Generation from Formate

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Palladium Supported on Porous Chitosan-Graphene Oxide Aerogels as Highly Efficient Catalysts for Hydrogen Generation from Formate

Mostrar el registro completo del ítem

Anouar, A.; Katir, N.; El Kadib, A.; Primo Arnau, AM.; García Gómez, H. (2019). Palladium Supported on Porous Chitosan-Graphene Oxide Aerogels as Highly Efficient Catalysts for Hydrogen Generation from Formate. Molecules. 24(18):1-13. https://doi.org/10.3390/molecules24183290

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/159612

Ficheros en el ítem

Metadatos del ítem

Título: Palladium Supported on Porous Chitosan-Graphene Oxide Aerogels as Highly Efficient Catalysts for Hydrogen Generation from Formate
Autor: Anouar, Aicha Katir, Nadia El Kadib, Abdelkrim Primo Arnau, Ana Maria García Gómez, Hermenegildo
Entidad UPV: Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Universitat Politècnica de València. Departamento de Química - Departament de Química
Fecha difusión:
Resumen:
[EN] Adsorption of Pd(NH3)(4)(2+) in preformed chitosan-graphene oxide (CS-GO) beads and their subsequent reduction with NaBH4 afford well-dispersed, high dispersion (similar to 21%) of uniformly sized Pd nanoparticles ...[+]
Palabras clave: Liquid hydrogen carriers , Formate as hydrogen carrier , Catalyst for hydrogen generation , Palladium as catalyst for hydrogen generation , Chitosan-graphene oxide as catalyst support
Derechos de uso: Reconocimiento (by)
Fuente:
Molecules. (issn: 1420-3049 )
DOI: 10.3390/molecules24183290
Editorial:
MDPI AG
Versión del editor: https://doi.org/10.3390/molecules24183290
Código del Proyecto:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-098237-B-C21/ES/HETEROUNIONES DE GRAFENO CON CONFIGURACION CONTROLADA. SINTESIS Y APLICACIONES COMO SOPORTE EN CATALISIS Y EN ELECTRODOS/
Agradecimientos:
This research was funded by the Spanish Ministry of Science, Innovation and Universities (Grant RTI2018-098237-B-C21 and Severo Ochoa). A.P. also thanks the Spanish Ministry of Science and Education a research associate ...[+]
Tipo: Artículo

References

Staffell, I., Scamman, D., Velazquez Abad, A., Balcombe, P., Dodds, P. E., Ekins, P., … Ward, K. R. (2019). The role of hydrogen and fuel cells in the global energy system. Energy & Environmental Science, 12(2), 463-491. doi:10.1039/c8ee01157e

Modisha, P. M., Ouma, C. N. M., Garidzirai, R., Wasserscheid, P., & Bessarabov, D. (2019). The Prospect of Hydrogen Storage Using Liquid Organic Hydrogen Carriers. Energy & Fuels, 33(4), 2778-2796. doi:10.1021/acs.energyfuels.9b00296

Sotoodeh, F., & Smith, K. J. (2013). An overview of the kinetics and catalysis of hydrogen storage on organic liquids. The Canadian Journal of Chemical Engineering, 91(9), 1477-1490. doi:10.1002/cjce.21871 [+]
Staffell, I., Scamman, D., Velazquez Abad, A., Balcombe, P., Dodds, P. E., Ekins, P., … Ward, K. R. (2019). The role of hydrogen and fuel cells in the global energy system. Energy & Environmental Science, 12(2), 463-491. doi:10.1039/c8ee01157e

Modisha, P. M., Ouma, C. N. M., Garidzirai, R., Wasserscheid, P., & Bessarabov, D. (2019). The Prospect of Hydrogen Storage Using Liquid Organic Hydrogen Carriers. Energy & Fuels, 33(4), 2778-2796. doi:10.1021/acs.energyfuels.9b00296

Sotoodeh, F., & Smith, K. J. (2013). An overview of the kinetics and catalysis of hydrogen storage on organic liquids. The Canadian Journal of Chemical Engineering, 91(9), 1477-1490. doi:10.1002/cjce.21871

Zhong, H., Iguchi, M., Chatterjee, M., Himeda, Y., Xu, Q., & Kawanami, H. (2018). Formic Acid‐Based Liquid Organic Hydrogen Carrier System with Heterogeneous Catalysts. Advanced Sustainable Systems, 2(2), 1700161. doi:10.1002/adsu.201700161

Li, S., Zhou, Y., Kang, X., Liu, D., Gu, L., Zhang, Q., … Jiang, Q. (2019). A Simple and Effective Principle for a Rational Design of Heterogeneous Catalysts for Dehydrogenation of Formic Acid. Advanced Materials, 31(15), 1806781. doi:10.1002/adma.201806781

Boddien, A., Mellmann, D., Gärtner, F., Jackstell, R., Junge, H., Dyson, P. J., … Beller, M. (2011). Efficient Dehydrogenation of Formic Acid Using an Iron Catalyst. Science, 333(6050), 1733-1736. doi:10.1126/science.1206613

Akbayrak, S., Tonbul, Y., & Özkar, S. (2017). Nanoceria supported palladium(0) nanoparticles: Superb catalyst in dehydrogenation of formic acid at room temperature. Applied Catalysis B: Environmental, 206, 384-392. doi:10.1016/j.apcatb.2017.01.063

Bi, Q.-Y., Lin, J.-D., Liu, Y.-M., He, H.-Y., Huang, F.-Q., & Cao, Y. (2016). Dehydrogenation of Formic Acid at Room Temperature: Boosting Palladium Nanoparticle Efficiency by Coupling with Pyridinic-Nitrogen-Doped Carbon. Angewandte Chemie, 128(39), 12028-12032. doi:10.1002/ange.201605961

Li, Z., Yang, X., Tsumori, N., Liu, Z., Himeda, Y., Autrey, T., & Xu, Q. (2017). Tandem Nitrogen Functionalization of Porous Carbon: Toward Immobilizing Highly Active Palladium Nanoclusters for Dehydrogenation of Formic Acid. ACS Catalysis, 7(4), 2720-2724. doi:10.1021/acscatal.7b00053

Kandile, N. G., Zaky, H. T., Mohamed, M. I., Nasr, A. S., & Ali, Y. G. (2018). Extraction and Characterization of Chitosan from Shrimp Shells. Open Journal of Organic Polymer Materials, 08(03), 33-42. doi:10.4236/ojopm.2018.83003

Molnár, Á. (2019). The use of chitosan-based metal catalysts in organic transformations. Coordination Chemistry Reviews, 388, 126-171. doi:10.1016/j.ccr.2019.02.018

Guibal, E. (2005). Heterogeneous catalysis on chitosan-based materials: a review. Progress in Polymer Science, 30(1), 71-109. doi:10.1016/j.progpolymsci.2004.12.001

El Kadib, A., Primo, A., Molvinger, K., Bousmina, M., & Brunel, D. (2011). Nanosized Vanadium, Tungsten and Molybdenum Oxide Clusters Grown in Porous Chitosan Microspheres as Promising Hybrid Materials for Selective Alcohol Oxidation. Chemistry – A European Journal, 17(28), 7940-7946. doi:10.1002/chem.201003740

Barskiy, D. A., Kovtunov, K. V., Primo, A., Corma, A., Kaptein, R., & Koptyug, I. V. (2012). Selective Hydrogenation of 1,3-Butadiene and 1-Butyne over a Rh/Chitosan Catalyst Investigated by using Parahydrogen-Induced Polarization. ChemCatChem, 4(12), 2031-2035. doi:10.1002/cctc.201200414

Frindy, S., Primo, A., Lahcini, M., Bousmina, M., Garcia, H., & El Kadib, A. (2015). Pd embedded in chitosan microspheres as tunable soft-materials for Sonogashira cross-coupling in water–ethanol mixture. Green Chemistry, 17(3), 1893-1898. doi:10.1039/c4gc02175d

Primo, A., & Quignard, F. (2010). Chitosan as efficient porous support for dispersion of highly active gold nanoparticles: design of hybrid catalyst for carbon–carbon bond formation. Chemical Communications, 46(30), 5593. doi:10.1039/c0cc01137a

Chtchigrovsky, M., Primo, A., Gonzalez, P., Molvinger, K., Robitzer, M., Quignard, F., & Taran, F. (2009). Functionalized Chitosan as a Green, Recyclable, Biopolymer-Supported Catalyst for the [3+2] Huisgen Cycloaddition. Angewandte Chemie International Edition, 48(32), 5916-5920. doi:10.1002/anie.200901309

Primo, A., Liebel, M., & Quignard, F. (2009). Palladium Coordination Biopolymer: A Versatile Access to Highly Porous Dispersed Catalyst for Suzuki Reaction. Chemistry of Materials, 21(4), 621-627. doi:10.1021/cm8020337

El Kadib, A. (2014). Chitosan as a Sustainable Organocatalyst: A Concise Overview. ChemSusChem, 8(2), 217-244. doi:10.1002/cssc.201402718

Bratskaya, S., Privar, Y., Nesterov, D., Modin, E., Kodess, M., Slobodyuk, A., … Pestov, A. (2019). Chitosan Gels and Cryogels Cross-Linked with Diglycidyl Ethers of Ethylene Glycol and Polyethylene Glycol in Acidic Media. Biomacromolecules, 20(4), 1635-1643. doi:10.1021/acs.biomac.8b01817

Kadib, A. E., Bousmina, M., & Brunel, D. (2014). Recent Progress in Chitosan Bio-Based Soft Nanomaterials. Journal of Nanoscience and Nanotechnology, 14(1), 308-331. doi:10.1166/jnn.2014.9012

Frindy, S., Primo, A., Ennajih, H., el kacem Qaiss, A., Bouhfid, R., Lahcini, M., … El Kadib, A. (2017). Chitosan–graphene oxide films and CO 2 -dried porous aerogel microspheres: Interfacial interplay and stability. Carbohydrate Polymers, 167, 297-305. doi:10.1016/j.carbpol.2017.03.034

Valentin, R., Molvinger, K., Quignard, F., & Brunel, D. (2003). Supercritical CO2 dried chitosan: an efficient intrinsic heterogeneous catalyst in fine chemistry. New Journal of Chemistry, 27(12), 1690. doi:10.1039/b310109f

Huang, T., Shao, Y., Zhang, Q., Deng, Y., Liang, Z., Guo, F., … Wang, Y. (2019). Chitosan-Cross-Linked Graphene Oxide/Carboxymethyl Cellulose Aerogel Globules with High Structure Stability in Liquid and Extremely High Adsorption Ability. ACS Sustainable Chemistry & Engineering, 7(9), 8775-8788. doi:10.1021/acssuschemeng.9b00691

Kolanthai, E., Sindu, P. A., Khajuria, D. K., Veerla, S. C., Kuppuswamy, D., Catalani, L. H., & Mahapatra, D. R. (2018). Graphene Oxide—A Tool for the Preparation of Chemically Crosslinking Free Alginate–Chitosan–Collagen Scaffolds for Bone Tissue Engineering. ACS Applied Materials & Interfaces, 10(15), 12441-12452. doi:10.1021/acsami.8b00699

Dobrovolná, Z., & Červený, L. (2000). Ammonium formate decomposition using palladium catalyst. Research on Chemical Intermediates, 26(5), 489-497. doi:10.1163/156856700x00480

Han, D., & Yan, L. (2013). Supramolecular Hydrogel of Chitosan in the Presence of Graphene Oxide Nanosheets as 2D Cross-Linkers. ACS Sustainable Chemistry & Engineering, 2(2), 296-300. doi:10.1021/sc400352a

Wang, J., Tan, H., Jiang, D., & Zhou, K. (2017). Enhancing H2 evolution by optimizing H adatom combination and desorption over Pd nanocatalyst. Nano Energy, 33, 410-417. doi:10.1016/j.nanoen.2017.02.001

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem