- -

Hybrid benzidinium lead iodide perovskites with a 1D structure as photoinduced electron transfer photocatalysts

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Hybrid benzidinium lead iodide perovskites with a 1D structure as photoinduced electron transfer photocatalysts

Mostrar el registro completo del ítem

Peng, Y.; Albero-Sancho, J.; Alvarez, E.; García Gómez, H. (2019). Hybrid benzidinium lead iodide perovskites with a 1D structure as photoinduced electron transfer photocatalysts. Sustainable Energy & Fuels. 3(9):2356-2360. https://doi.org/10.1039/c9se00182d

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/159998

Ficheros en el ítem

Metadatos del ítem

Título: Hybrid benzidinium lead iodide perovskites with a 1D structure as photoinduced electron transfer photocatalysts
Autor: Peng, Yong Albero-Sancho, Josep Alvarez, Eleuterio García Gómez, Hermenegildo
Entidad UPV: Universitat Politècnica de València. Departamento de Química - Departament de Química
Fecha difusión:
Resumen:
[EN] A hybrid benzidinium lead iodide perovskite (formula: PbI(3)benzidinium(0.5)) (3) with a 1D structure has been synthesized and characterized. The hybrid perovskite exhibits visible light (lambda > 450 nm) photocatalytic ...[+]
Derechos de uso: Reserva de todos los derechos
Fuente:
Sustainable Energy & Fuels. (eissn: 2398-4902 )
DOI: 10.1039/c9se00182d
Editorial:
Royal Society of Chemistry
Versión del editor: https://doi.org/10.1039/c9se00182d
Código del Proyecto:
info:eu-repo/grantAgreement/GVA//PROMETEO%2F2017%2F083/
MINECO/CTQ2015-69563-CO2-R1
Agradecimientos:
Financial support from the Spanish Ministry of Economy and Competitiveness (Severo Ochoa, and CTQ2015-69563-CO2-R1) and the Generalitat Valenciana (Prometeo 2017/083) is gratefully acknowledged. Yong Peng also thanks the ...[+]
Tipo: Artículo

References

Kojima, A., Teshima, K., Shirai, Y., & Miyasaka, T. (2009). Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. Journal of the American Chemical Society, 131(17), 6050-6051. doi:10.1021/ja809598r

Ponseca, C. S., Savenije, T. J., Abdellah, M., Zheng, K., Yartsev, A., Pascher, T., … Sundström, V. (2014). Organometal Halide Perovskite Solar Cell Materials Rationalized: Ultrafast Charge Generation, High and Microsecond-Long Balanced Mobilities, and Slow Recombination. Journal of the American Chemical Society, 136(14), 5189-5192. doi:10.1021/ja412583t

Saliba, M., Orlandi, S., Matsui, T., Aghazada, S., Cavazzini, M., Correa-Baena, J.-P., … Nazeeruddin, M. K. (2016). A molecularly engineered hole-transporting material for efficient perovskite solar cells. Nature Energy, 1(2). doi:10.1038/nenergy.2015.17 [+]
Kojima, A., Teshima, K., Shirai, Y., & Miyasaka, T. (2009). Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. Journal of the American Chemical Society, 131(17), 6050-6051. doi:10.1021/ja809598r

Ponseca, C. S., Savenije, T. J., Abdellah, M., Zheng, K., Yartsev, A., Pascher, T., … Sundström, V. (2014). Organometal Halide Perovskite Solar Cell Materials Rationalized: Ultrafast Charge Generation, High and Microsecond-Long Balanced Mobilities, and Slow Recombination. Journal of the American Chemical Society, 136(14), 5189-5192. doi:10.1021/ja412583t

Saliba, M., Orlandi, S., Matsui, T., Aghazada, S., Cavazzini, M., Correa-Baena, J.-P., … Nazeeruddin, M. K. (2016). A molecularly engineered hole-transporting material for efficient perovskite solar cells. Nature Energy, 1(2). doi:10.1038/nenergy.2015.17

Zhao, D., Wang, C., Song, Z., Yu, Y., Chen, C., Zhao, X., … Yan, Y. (2018). Four-Terminal All-Perovskite Tandem Solar Cells Achieving Power Conversion Efficiencies Exceeding 23%. ACS Energy Letters, 3(2), 305-306. doi:10.1021/acsenergylett.7b01287

Park, S., Chang, W. J., Lee, C. W., Park, S., Ahn, H.-Y., & Nam, K. T. (2016). Photocatalytic hydrogen generation from hydriodic acid using methylammonium lead iodide in dynamic equilibrium with aqueous solution. Nature Energy, 2(1). doi:10.1038/nenergy.2016.185

Zhu, X., Lin, Y., Sun, Y., Beard, M. C., & Yan, Y. (2019). Lead-Halide Perovskites for Photocatalytic α-Alkylation of Aldehydes. Journal of the American Chemical Society, 141(2), 733-738. doi:10.1021/jacs.8b08720

Febriansyah, B., Koh, T. M., John, R. A., Ganguly, R., Li, Y., Bruno, A., … England, J. (2018). Inducing Panchromatic Absorption and Photoconductivity in Polycrystalline Molecular 1D Lead-Iodide Perovskites through π-Stacked Viologens. Chemistry of Materials, 30(17), 5827-5830. doi:10.1021/acs.chemmater.8b02038

Hu, H., Meier, F., Zhao, D., Abe, Y., Gao, Y., Chen, B., … Lam, Y. M. (2018). Efficient Room-Temperature Phosphorescence from Organic-Inorganic Hybrid Perovskites by Molecular Engineering. Advanced Materials, 30(36), 1707621. doi:10.1002/adma.201707621

Merkel, P. B., Luo, P., Dinnocenzo, J. P., & Farid, S. (2009). Accurate Oxidation Potentials of Benzene and Biphenyl Derivatives via Electron-Transfer Equilibria and Transient Kinetics. The Journal of Organic Chemistry, 74(15), 5163-5173. doi:10.1021/jo9011267

Meggers, E., Steckhan, E., & Blechert, S. (1995). Radical CC Bond Formation by Photoinduced Electron Transfer Addition ofα-Silyl Carbamates to Acceptor-Substituted Alkenes. Angewandte Chemie International Edition in English, 34(19), 2137-2139. doi:10.1002/anie.199521371

Heacock, R. A., & Marion, L. (1956). THE INFRARED SPECTRA OF SECONDARY AMINES AND THEIR SALTS. Canadian Journal of Chemistry, 34(12), 1782-1795. doi:10.1139/v56-231

Albero, J., Asiri, A. M., & García, H. (2016). Influence of the composition of hybrid perovskites on their performance in solar cells. Journal of Materials Chemistry A, 4(12), 4353-4364. doi:10.1039/c6ta00334f

Gao, P., Bin Mohd Yusoff, A. R., & Nazeeruddin, M. K. (2018). Dimensionality engineering of hybrid halide perovskite light absorbers. Nature Communications, 9(1). doi:10.1038/s41467-018-07382-9

Cao, D. H., Stoumpos, C. C., Farha, O. K., Hupp, J. T., & Kanatzidis, M. G. (2015). 2D Homologous Perovskites as Light-Absorbing Materials for Solar Cell Applications. Journal of the American Chemical Society, 137(24), 7843-7850. doi:10.1021/jacs.5b03796

Ogomi, Y., Morita, A., Tsukamoto, S., Saitho, T., Fujikawa, N., Shen, Q., … Hayase, S. (2014). CH3NH3SnxPb(1–x)I3 Perovskite Solar Cells Covering up to 1060 nm. The Journal of Physical Chemistry Letters, 5(6), 1004-1011. doi:10.1021/jz5002117

Safdari, M., Svensson, P. H., Hoang, M. T., Oh, I., Kloo, L., & Gardner, J. M. (2016). Layered 2D alkyldiammonium lead iodide perovskites: synthesis, characterization, and use in solar cells. Journal of Materials Chemistry A, 4(40), 15638-15646. doi:10.1039/c6ta05055g

Lorenzon, M., Sortino, L., Akkerman, Q., Accornero, S., Pedrini, J., Prato, M., … Brovelli, S. (2017). Role of Nonradiative Defects and Environmental Oxygen on Exciton Recombination Processes in CsPbBr3 Perovskite Nanocrystals. Nano Letters, 17(6), 3844-3853. doi:10.1021/acs.nanolett.7b01253

Corma, A., Fornes, V., Garcia, H., Miranda, M. A., Primo, J., & Sabater, M.-J. (1994). Photoinduced Electron Transfer within Zeolite Cavities: cis-Stilbene Isomerization Photosensitized by 2,4,6-Triphenylpyrylium Cation Imprisoned inside Zeolite Y. Journal of the American Chemical Society, 116(6), 2276-2280. doi:10.1021/ja00085a006

Waldeck, D. H. (1991). Photoisomerization dynamics of stilbenes. Chemical Reviews, 91(3), 415-436. doi:10.1021/cr00003a007

Saltiel, J., Ganapathy, S., & Werking, C. (1987). The .DELTA.H for thermal trans/cis-stilbene isomerization: do S0 and T1 potential energy curves cross? The Journal of Physical Chemistry, 91(11), 2755-2758. doi:10.1021/j100295a022

De Wergifosse, M., Houk, A. L., Krylov, A. I., & Elles, C. G. (2017). Two-photon absorption spectroscopy of trans-stilbene, cis-stilbene, and phenanthrene: Theory and experiment. The Journal of Chemical Physics, 146(14), 144305. doi:10.1063/1.4979651

Alvaro, M., Aprile, C., Ferrer, B., & Garcia, H. (2007). Functional Molecules from Single Wall Carbon Nanotubes. Photoinduced Solubility of Short Single Wall Carbon Nanotube Residues by Covalent Anchoring of 2,4,6-Triarylpyrylium Units. Journal of the American Chemical Society, 129(17), 5647-5655. doi:10.1021/ja0690520

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem