Mostrar el registro sencillo del ítem
dc.contributor.author | Albanese, Angela A. | es_ES |
dc.contributor.author | Bonet Solves, José Antonio | es_ES |
dc.contributor.author | Ricker, Werner J. | es_ES |
dc.date.accessioned | 2021-01-28T04:32:13Z | |
dc.date.available | 2021-01-28T04:32:13Z | |
dc.date.issued | 2019-04 | es_ES |
dc.identifier.issn | 1578-7303 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/160090 | |
dc.description.abstract | [EN] The Fréchet sequence spaces ces(p+) are very different to the Fréchet sequence spaces ¿p+,1¿p<¿, that generate them, (Albanese et al. in J Math Anal Appl 458:1314¿1323, 2018). The aim of this paper is to investigate various properties (eg. continuity, compactness, mean ergodicity) of certain linear operators acting in and between the spaces ces(p+), such as the Cesàro operator, inclusion operators and multiplier operators. Determination of the spectra of such classical operators is an important feature. It turns out that both the space of multiplier operators M(ces(p+)) and its subspace Mc(ces(p+)) consisting of the compact multiplier operators are independent of p. Moreover, Mc(ces(p+)) can be topologized so that it is the strong dual of the Fréchet¿Schwartz space ces(1+) and (Mc(ces(p+))¿ß¿ces(1+) is a proper subspace of the Köthe echelon Fréchet space M(ces(p+))=¿¿(A),1¿p<¿, for a suitable matrix A | es_ES |
dc.description.sponsorship | The research of the first two authors was partially supported by the projects MTM2016-76647-P and GV Prometeo/2017/102 (Spain). The authors are thankful to the referees for their careful reading of the manuscript and their suggestions which improved the presentation of the article. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer-Verlag | es_ES |
dc.relation.ispartof | Revista de la Real Academia de Ciencias Exactas Físicas y Naturales Serie A Matemáticas | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Fréchet space | es_ES |
dc.subject | Sequence space ces(p+) | es_ES |
dc.subject | Spectrum | es_ES |
dc.subject | Multiplier operator | es_ES |
dc.subject | Cesàro operator | es_ES |
dc.subject | Mean ergodic operator | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Operators on the Fréchet sequence space ces(p+), $1 \leq p < \infty$ | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s13398-018-0564-2 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MTM2016-76647-P/ES/ANALISIS FUNCIONAL, TEORIA DE OPERADORES Y ANALISIS TIEMPO-FRECUENCIA/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEO%2F2017%2F102/ES/ANALISIS FUNCIONAL, TEORIA DE OPERADORES Y APLICACIONES/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Albanese, AA.; Bonet Solves, JA.; Ricker, WJ. (2019). Operators on the Fréchet sequence space ces(p+), $1 \leq p < \infty$. Revista de la Real Academia de Ciencias Exactas Físicas y Naturales Serie A Matemáticas. 113(2):1533-1556. https://doi.org/10.1007/s13398-018-0564-2 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1007/s13398-018-0564-2 | es_ES |
dc.description.upvformatpinicio | 1533 | es_ES |
dc.description.upvformatpfin | 1556 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 113 | es_ES |
dc.description.issue | 2 | es_ES |
dc.relation.pasarela | S\405018 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Albanese, A.A., Bonet, J., Ricker, W.J.: Mean ergodic operators in Fréchet spaces. Ann. Acad. Sci. Fenn. Math. 34, 401–436 (2009) | es_ES |
dc.description.references | Albanese, A.A., Bonet, J., Ricker, W.J.: The Cesàro operator in the Fréchet spaces $$\ell ^{p+}$$ ℓ p + and $$L^{p-}$$ L p - . Glasgow Math. J. 59, 273–287 (2017) | es_ES |
dc.description.references | Albanese, A.A., Bonet, J., Ricker, W.J.: The Fréchet spaces $$ces(p+),1 < p < \infty,$$ c e s ( p + ) , 1 < p < ∞ , . J. Math. Anal. Appl. 458, 1314–1323 (2018) | es_ES |
dc.description.references | Albanese, A.A., Bonet, J., Ricker, W.J.: Multiplier and averaging operators in the Banach spaces $$ces(p),1 < p < \infty ,$$ c e s ( p ) , 1 < p < ∞ , Positivity. https://doi.org/10.1007/s11117-018-0601-6 | es_ES |
dc.description.references | Bachelis, G.F., Gilbert, J.E.: Banach spaces of compact multipliers and their dual spaces. Math. Z. 125, 285–297 (1972) | es_ES |
dc.description.references | Bennett, G.: Factorizing the classical inequalities, Mem. Am. Math. Soc. 120(576), viii + 130 pp (1996) | es_ES |
dc.description.references | Bonet, J., Ricker, W.J.: The canonical spectral measure in Köthe echelon spaces. Integral Equ. Oper. Theory 53, 477–496 (2005) | es_ES |
dc.description.references | Bourdon, P.S., Feldman, N.S., Shapiro, J.H.: Some properties of $$N$$ N -supercyclic operators. Studia Math. 165, 135–157 (2004) | es_ES |
dc.description.references | Crofts, G.: Concerning perfect Fréchet spaces and diagonal transformations. Math. Ann. 182, 67–76 (1969) | es_ES |
dc.description.references | Curbera, G.P., Ricker, W.J.: Solid extensions of the Cesàro operator on $$\ell ^p$$ ℓ p and $$c_0$$ c 0 . Integral Equ. Oper. Theory 80, 61–77 (2014) | es_ES |
dc.description.references | Díaz, J.-C.: An example of a Fréchet space, not Montel, without infinite-dimensional normable subspaces. Proc. Am. Math. Soc. 96, 721 (1986) | es_ES |
dc.description.references | Edwards, R.E.: Functional Analysis. Theory and Applications, Holt, Rinehart and Winston, New York Chicago San Francisco (1965) | es_ES |
dc.description.references | Grosse-Erdmann, K.-G.: The Blocking Technique, Weighted Mean Operators and Hardy’s Inequality. Lecture Notes in Mathematics, vol. 1679. Springer, Berlin (1998) | es_ES |
dc.description.references | Grothendieck, A.: Topological Vector Spaces. Gordon and Breach, London (1973) | es_ES |
dc.description.references | Hardy, G.H., Littlewood, J.E., Pólya, G.: Inequalities. Cambridge University Press, Cambridge reprinted (1964) | es_ES |
dc.description.references | Jarchow, H.: Locally Convex Spaces. Teubner, Stuttgart (1981) | es_ES |
dc.description.references | Krengel, U.: Ergodic Theorems. de Gruyter Studies in Mathematics 6. Walter de Gruyter Co., Berlin (1985) | es_ES |
dc.description.references | Meise, R., Vogt, D.: Introduction to Functional Analysis. Clarendon Press, Oxford (1997) | es_ES |
dc.description.references | Metafune, G., Moscatelli, V.B.: On the space $$\ell ^{p+}=\cap_{q>p}\ell ^q$$ ℓ p + = ∩ q > p ℓ q . Math. Nachr. 147, 7–12 (1990) | es_ES |
dc.description.references | Pérez Carreras, P., Bonet, J.: Barrelled Locally Convex Spaces. North Holland, Amsterdam (1987) | es_ES |
dc.description.references | Pitt, H.R.: A note on bilinear forms. J. Lond. Math. Soc. 11, 171–174 (1936) | es_ES |
dc.description.references | Ricker, W.J.: A spectral mapping theorem for scalar-type spectral operators in locally convex spaces. Integral Equ. Oper. Theory 8, 276–288 (1985) | es_ES |
dc.description.references | Robertson, A.P., Robertson, W.: Topological Vector Spaces. Cambridge University Press, Cambridge (1973) | es_ES |
dc.description.references | Waelbroeck, L.: Topological vector spaces and algebras. Lecture Notes in Mathematics, vol. 230. Springer, Berlin (1971) | es_ES |