- -

Operators on the Fréchet sequence space ces(p+), $1 \leq p < \infty$

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Operators on the Fréchet sequence space ces(p+), $1 \leq p < \infty$

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Albanese, Angela A. es_ES
dc.contributor.author Bonet Solves, José Antonio es_ES
dc.contributor.author Ricker, Werner J. es_ES
dc.date.accessioned 2021-01-28T04:32:13Z
dc.date.available 2021-01-28T04:32:13Z
dc.date.issued 2019-04 es_ES
dc.identifier.issn 1578-7303 es_ES
dc.identifier.uri http://hdl.handle.net/10251/160090
dc.description.abstract [EN] The Fréchet sequence spaces ces(p+) are very different to the Fréchet sequence spaces ¿p+,1¿p<¿, that generate them, (Albanese et al. in J Math Anal Appl 458:1314¿1323, 2018). The aim of this paper is to investigate various properties (eg. continuity, compactness, mean ergodicity) of certain linear operators acting in and between the spaces ces(p+), such as the Cesàro operator, inclusion operators and multiplier operators. Determination of the spectra of such classical operators is an important feature. It turns out that both the space of multiplier operators M(ces(p+)) and its subspace Mc(ces(p+)) consisting of the compact multiplier operators are independent of p. Moreover, Mc(ces(p+)) can be topologized so that it is the strong dual of the Fréchet¿Schwartz space ces(1+) and (Mc(ces(p+))¿ß¿ces(1+) is a proper subspace of the Köthe echelon Fréchet space M(ces(p+))=¿¿(A),1¿p<¿, for a suitable matrix A es_ES
dc.description.sponsorship The research of the first two authors was partially supported by the projects MTM2016-76647-P and GV Prometeo/2017/102 (Spain). The authors are thankful to the referees for their careful reading of the manuscript and their suggestions which improved the presentation of the article. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Revista de la Real Academia de Ciencias Exactas Físicas y Naturales Serie A Matemáticas es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Fréchet space es_ES
dc.subject Sequence space ces(p+) es_ES
dc.subject Spectrum es_ES
dc.subject Multiplier operator es_ES
dc.subject Cesàro operator es_ES
dc.subject Mean ergodic operator es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Operators on the Fréchet sequence space ces(p+), $1 \leq p < \infty$ es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s13398-018-0564-2 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MTM2016-76647-P/ES/ANALISIS FUNCIONAL, TEORIA DE OPERADORES Y ANALISIS TIEMPO-FRECUENCIA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2017%2F102/ES/ANALISIS FUNCIONAL, TEORIA DE OPERADORES Y APLICACIONES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Albanese, AA.; Bonet Solves, JA.; Ricker, WJ. (2019). Operators on the Fréchet sequence space ces(p+), $1 \leq p < \infty$. Revista de la Real Academia de Ciencias Exactas Físicas y Naturales Serie A Matemáticas. 113(2):1533-1556. https://doi.org/10.1007/s13398-018-0564-2 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s13398-018-0564-2 es_ES
dc.description.upvformatpinicio 1533 es_ES
dc.description.upvformatpfin 1556 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 113 es_ES
dc.description.issue 2 es_ES
dc.relation.pasarela S\405018 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Albanese, A.A., Bonet, J., Ricker, W.J.: Mean ergodic operators in Fréchet spaces. Ann. Acad. Sci. Fenn. Math. 34, 401–436 (2009) es_ES
dc.description.references Albanese, A.A., Bonet, J., Ricker, W.J.: The Cesàro operator in the Fréchet spaces $$\ell ^{p+}$$ ℓ p + and $$L^{p-}$$ L p - . Glasgow Math. J. 59, 273–287 (2017) es_ES
dc.description.references Albanese, A.A., Bonet, J., Ricker, W.J.: The Fréchet spaces $$ces(p+),1 < p < \infty,$$ c e s ( p + ) , 1 < p < ∞ , . J. Math. Anal. Appl. 458, 1314–1323 (2018) es_ES
dc.description.references Albanese, A.A., Bonet, J., Ricker, W.J.: Multiplier and averaging operators in the Banach spaces $$ces(p),1 < p < \infty ,$$ c e s ( p ) , 1 < p < ∞ , Positivity. https://doi.org/10.1007/s11117-018-0601-6 es_ES
dc.description.references Bachelis, G.F., Gilbert, J.E.: Banach spaces of compact multipliers and their dual spaces. Math. Z. 125, 285–297 (1972) es_ES
dc.description.references Bennett, G.: Factorizing the classical inequalities, Mem. Am. Math. Soc. 120(576), viii + 130 pp (1996) es_ES
dc.description.references Bonet, J., Ricker, W.J.: The canonical spectral measure in Köthe echelon spaces. Integral Equ. Oper. Theory 53, 477–496 (2005) es_ES
dc.description.references Bourdon, P.S., Feldman, N.S., Shapiro, J.H.: Some properties of $$N$$ N -supercyclic operators. Studia Math. 165, 135–157 (2004) es_ES
dc.description.references Crofts, G.: Concerning perfect Fréchet spaces and diagonal transformations. Math. Ann. 182, 67–76 (1969) es_ES
dc.description.references Curbera, G.P., Ricker, W.J.: Solid extensions of the Cesàro operator on $$\ell ^p$$ ℓ p and $$c_0$$ c 0 . Integral Equ. Oper. Theory 80, 61–77 (2014) es_ES
dc.description.references Díaz, J.-C.: An example of a Fréchet space, not Montel, without infinite-dimensional normable subspaces. Proc. Am. Math. Soc. 96, 721 (1986) es_ES
dc.description.references Edwards, R.E.: Functional Analysis. Theory and Applications, Holt, Rinehart and Winston, New York Chicago San Francisco (1965) es_ES
dc.description.references Grosse-Erdmann, K.-G.: The Blocking Technique, Weighted Mean Operators and Hardy’s Inequality. Lecture Notes in Mathematics, vol. 1679. Springer, Berlin (1998) es_ES
dc.description.references Grothendieck, A.: Topological Vector Spaces. Gordon and Breach, London (1973) es_ES
dc.description.references Hardy, G.H., Littlewood, J.E., Pólya, G.: Inequalities. Cambridge University Press, Cambridge reprinted (1964) es_ES
dc.description.references Jarchow, H.: Locally Convex Spaces. Teubner, Stuttgart (1981) es_ES
dc.description.references Krengel, U.: Ergodic Theorems. de Gruyter Studies in Mathematics 6. Walter de Gruyter Co., Berlin (1985) es_ES
dc.description.references Meise, R., Vogt, D.: Introduction to Functional Analysis. Clarendon Press, Oxford (1997) es_ES
dc.description.references Metafune, G., Moscatelli, V.B.: On the space $$\ell ^{p+}=\cap_{q>p}\ell ^q$$ ℓ p + = ∩ q > p ℓ q . Math. Nachr. 147, 7–12 (1990) es_ES
dc.description.references Pérez Carreras, P., Bonet, J.: Barrelled Locally Convex Spaces. North Holland, Amsterdam (1987) es_ES
dc.description.references Pitt, H.R.: A note on bilinear forms. J. Lond. Math. Soc. 11, 171–174 (1936) es_ES
dc.description.references Ricker, W.J.: A spectral mapping theorem for scalar-type spectral operators in locally convex spaces. Integral Equ. Oper. Theory 8, 276–288 (1985) es_ES
dc.description.references Robertson, A.P., Robertson, W.: Topological Vector Spaces. Cambridge University Press, Cambridge (1973) es_ES
dc.description.references Waelbroeck, L.: Topological vector spaces and algebras. Lecture Notes in Mathematics, vol. 230. Springer, Berlin (1971) es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem