- -

Biohybrids for spinal cord injury repair

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Biohybrids for spinal cord injury repair

Mostrar el registro completo del ítem

Martínez-Ramos, C.; Rodriguez Doblado, L.; López Mocholi, E.; Alastrue-Agudo, A.; Sánchez Petidier, M.; Giraldo-Reboloso, E.; Monleón Pradas, M.... (2019). Biohybrids for spinal cord injury repair. Journal of Tissue Engineering and Regenerative Medicine. 13(3):509-521. https://doi.org/10.1002/term.2816

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/160297

Ficheros en el ítem

Metadatos del ítem

Título: Biohybrids for spinal cord injury repair
Autor: Martínez-Ramos, Cristina Rodriguez Doblado, Laura López Mocholi, Eric Alastrue-Agudo, Ana Sánchez Petidier, Marina Giraldo-Reboloso, Esther Monleón Pradas, Manuel Moreno-Manzano, Victoria
Entidad UPV: Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia
Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada
Fecha difusión:
Resumen:
[EN] Spinal cord injuries (SCIs) result in the loss of sensory and motor function with massive cell death and axon degeneration. We have previously shown that transplantation of spinal cord-derived ependymal progenitor ...[+]
Palabras clave: Biomaterial , Hyaluronic acid , Neural differentiation , Poly-lactic fibres , Spinal cord injury
Derechos de uso: Reserva de todos los derechos
Fuente:
Journal of Tissue Engineering and Regenerative Medicine. (issn: 1932-6254 )
DOI: 10.1002/term.2816
Editorial:
John Wiley & Sons
Versión del editor: https://doi.org/10.1002/term.2816
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//MAT2015-66666-C3-2-R/ES/BIOHIBRIDOS PARA LA PROMOCION DEL CRECIMIENTO AXONAL Y LA REGENERACION EN LESION MEDULAR AGUDA Y CRONICA/
info:eu-repo/grantAgreement/MINECO//MAT2015-66666-C3-1-R/ES/BIOHIBRIDOS PARA LA PROMOCION DEL CRECIMIENTO AXONAL Y LA REGENERACION EN EL SISTEMA NERVIOSO CENTRAL Y PERIFERICO/
info:eu-repo/grantAgreement/MECD//FPU15%2F04975/ES/FPU15%2F04975/
Descripción: This is the peer reviewed version of the following article: Martínez-Ramos, C, Doblado, LR, Mocholi, EL, et al. Biohybrids for spinal cord injury repair. J Tissue Eng Regen Med. 2019; 13: 509-521, which has been published in final form at https://doi.org/10.1002/term.2816. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.
Agradecimientos:
Secretaria de Estado de Investigacion, Desarrollo e Innovacion, Grant/Award Number: MAT2015-66666-C3-1-R MINECO/FEDER MAT2015-66666-C3-2-R MINECO/FEDER; Spanish Ministry of Education, Culture and Sports through Laura ...[+]
Tipo: Artículo

References

Ahuja, C. S., & Fehlings, M. (2016). Concise Review: Bridging the Gap: Novel Neuroregenerative and Neuroprotective Strategies in Spinal Cord Injury. STEM CELLS Translational Medicine, 5(7), 914-924. doi:10.5966/sctm.2015-0381

Alastrue-Agudo, A., Erceg, S., Cases-Villar, M., Bisbal-Velasco, V., Griffeth, R. J., Rodriguez-Jiménez, F. J., & Moreno-Manzano, V. (2014). Experimental Cell Transplantation for Traumatic Spinal Cord Injury Regeneration: Intramedullar or Intrathecal Administration. Methods in Molecular Biology, 23-35. doi:10.1007/978-1-4939-1435-7_3

Alastrue-Agudo, A., Rodriguez-Jimenez, F., Mocholi, E., De Giorgio, F., Erceg, S., & Moreno-Manzano, V. (2018). FM19G11 and Ependymal Progenitor/Stem Cell Combinatory Treatment Enhances Neuronal Preservation and Oligodendrogenesis after Severe Spinal Cord Injury. International Journal of Molecular Sciences, 19(1), 200. doi:10.3390/ijms19010200 [+]
Ahuja, C. S., & Fehlings, M. (2016). Concise Review: Bridging the Gap: Novel Neuroregenerative and Neuroprotective Strategies in Spinal Cord Injury. STEM CELLS Translational Medicine, 5(7), 914-924. doi:10.5966/sctm.2015-0381

Alastrue-Agudo, A., Erceg, S., Cases-Villar, M., Bisbal-Velasco, V., Griffeth, R. J., Rodriguez-Jiménez, F. J., & Moreno-Manzano, V. (2014). Experimental Cell Transplantation for Traumatic Spinal Cord Injury Regeneration: Intramedullar or Intrathecal Administration. Methods in Molecular Biology, 23-35. doi:10.1007/978-1-4939-1435-7_3

Alastrue-Agudo, A., Rodriguez-Jimenez, F., Mocholi, E., De Giorgio, F., Erceg, S., & Moreno-Manzano, V. (2018). FM19G11 and Ependymal Progenitor/Stem Cell Combinatory Treatment Enhances Neuronal Preservation and Oligodendrogenesis after Severe Spinal Cord Injury. International Journal of Molecular Sciences, 19(1), 200. doi:10.3390/ijms19010200

Alfaro-Cervello, C., Soriano-Navarro, M., Mirzadeh, Z., Alvarez-Buylla, A., & Garcia-Verdugo, J. M. (2012). Biciliated ependymal cell proliferation contributes to spinal cord growth. The Journal of Comparative Neurology, 520(15), 3528-3552. doi:10.1002/cne.23104

Assunção-Silva, R. C., Gomes, E. D., Sousa, N., Silva, N. A., & Salgado, A. J. (2015). Hydrogels and Cell Based Therapies in Spinal Cord Injury Regeneration. Stem Cells International, 2015, 1-24. doi:10.1155/2015/948040

BASSO, D. M., BEATTIE, M. S., & BRESNAHAN, J. C. (1995). A Sensitive and Reliable Locomotor Rating Scale for Open Field Testing in Rats. Journal of Neurotrauma, 12(1), 1-21. doi:10.1089/neu.1995.12.1

Bonner, J. F., & Steward, O. (2015). Repair of spinal cord injury with neuronal relays: From fetal grafts to neural stem cells. Brain Research, 1619, 115-123. doi:10.1016/j.brainres.2015.01.006

Collins, M. N., & Birkinshaw, C. (2013). Hyaluronic acid based scaffolds for tissue engineering—A review. Carbohydrate Polymers, 92(2), 1262-1279. doi:10.1016/j.carbpol.2012.10.028

Donnelly, D. J., & Popovich, P. G. (2008). Inflammation and its role in neuroprotection, axonal regeneration and functional recovery after spinal cord injury. Experimental Neurology, 209(2), 378-388. doi:10.1016/j.expneurol.2007.06.009

Erceg, S., Ronaghi, M., Oria, M., García Roselló, M., Aragó, M. A. P., Lopez, M. G., … Stojkovic, M. (2010). Transplanted Oligodendrocytes and Motoneuron Progenitors Generated from Human Embryonic Stem Cells Promote Locomotor Recovery After Spinal Cord Transection. STEM CELLS, 28(9), 1541-1549. doi:10.1002/stem.489

Gómez-Villafuertes, R., Rodríguez-Jiménez, F. J., Alastrue-Agudo, A., Stojkovic, M., Miras-Portugal, M. T., & Moreno-Manzano, V. (2015). Purinergic Receptors in Spinal Cord-Derived Ependymal Stem/Progenitor Cells and Their Potential Role in Cell-Based Therapy for Spinal Cord Injury. Cell Transplantation, 24(8), 1493-1509. doi:10.3727/096368914x682828

Hesp, Z. C., Goldstein, E. A., Miranda, C. J., Kaspar, B. K., & McTigue, D. M. (2015). Chronic Oligodendrogenesis and Remyelination after Spinal Cord Injury in Mice and Rats. Journal of Neuroscience, 35(3), 1274-1290. doi:10.1523/jneurosci.2568-14.2015

Kjell, J., & Olson, L. (2016). Rat models of spinal cord injury: from pathology to potential therapies. Disease Models & Mechanisms, 9(10), 1125-1137. doi:10.1242/dmm.025833

Kumar, P., Choonara, Y., Modi, G., Naidoo, D., & Pillay, V. (2015). Multifunctional Therapeutic Delivery Strategies for Effective Neuro-Regeneration Following Traumatic Spinal Cord Injury. Current Pharmaceutical Design, 21(12), 1517-1528. doi:10.2174/1381612821666150115152323

Li, G., Che, M.-T., Zhang, K., Qin, L.-N., Zhang, Y.-T., Chen, R.-Q., … Zeng, Y.-S. (2016). Graft of the NT-3 persistent delivery gelatin sponge scaffold promotes axon regeneration, attenuates inflammation, and induces cell migration in rat and canine with spinal cord injury. Biomaterials, 83, 233-248. doi:10.1016/j.biomaterials.2015.11.059

Li, X., & Dai, J. (2018). Bridging the gap with functional collagen scaffolds: tuning endogenous neural stem cells for severe spinal cord injury repair. Biomaterials Science, 6(2), 265-271. doi:10.1039/c7bm00974g

Liang, Y., Walczak, P., & Bulte, J. W. M. (2013). The survival of engrafted neural stem cells within hyaluronic acid hydrogels. Biomaterials, 34(22), 5521-5529. doi:10.1016/j.biomaterials.2013.03.095

Lim, S. H., Liu, X. Y., Song, H., Yarema, K. J., & Mao, H.-Q. (2010). The effect of nanofiber-guided cell alignment on the preferential differentiation of neural stem cells. Biomaterials, 31(34), 9031-9039. doi:10.1016/j.biomaterials.2010.08.021

Liu, C., Huang, Y., Pang, M., Yang, Y., Li, S., Liu, L., … Liu, B. (2015). Tissue-Engineered Regeneration of Completely Transected Spinal Cord Using Induced Neural Stem Cells and Gelatin-Electrospun Poly (Lactide-Co-Glycolide)/Polyethylene Glycol Scaffolds. PLOS ONE, 10(3), e0117709. doi:10.1371/journal.pone.0117709

Lu, P., Wang, Y., Graham, L., McHale, K., Gao, M., Wu, D., … Tuszynski, M. H. (2012). Long-Distance Growth and Connectivity of Neural Stem Cells after Severe Spinal Cord Injury. Cell, 150(6), 1264-1273. doi:10.1016/j.cell.2012.08.020

Morita, S., & Miyata, S. (2012). Synaptic localization of growth-associated protein 43 in cultured hippocampal neurons during synaptogenesis. Cell Biochemistry and Function, 31(5), 400-411. doi:10.1002/cbf.2914

Ortuño-Lizarán, I., Vilariño-Feltrer, G., Martínez-Ramos, C., Pradas, M. M., & Vallés-Lluch, A. (2016). Influence of synthesis parameters on hyaluronic acid hydrogels intended as nerve conduits. Biofabrication, 8(4), 045011. doi:10.1088/1758-5090/8/4/045011

Raspa, A., Marchini, A., Pugliese, R., Mauri, M., Maleki, M., Vasita, R., & Gelain, F. (2016). A biocompatibility study of new nanofibrous scaffolds for nervous system regeneration. Nanoscale, 8(1), 253-265. doi:10.1039/c5nr03698d

Requejo-Aguilar, R., Alastrue-Agudo, A., Cases-Villar, M., Lopez-Mocholi, E., England, R., Vicent, M. J., & Moreno-Manzano, V. (2017). Combined polymer-curcumin conjugate and ependymal progenitor/stem cell treatment enhances spinal cord injury functional recovery. Biomaterials, 113, 18-30. doi:10.1016/j.biomaterials.2016.10.032

Rodriguez-Jimenez, F. J., Alastrue, A., Stojkovic, M., Erceg, S., & Moreno-Manzano, V. (2016). Connexin 50 modulates Sox2 expression in spinal-cord-derived ependymal stem/progenitor cells. Cell and Tissue Research, 365(2), 295-307. doi:10.1007/s00441-016-2421-y

Simitzi, C., Ranella, A., & Stratakis, E. (2017). Controlling the morphology and outgrowth of nerve and neuroglial cells: The effect of surface topography. Acta Biomaterialia, 51, 21-52. doi:10.1016/j.actbio.2017.01.023

Steward, O., Sharp, K. G., Yee, K. M., Hatch, M. N., & Bonner, J. F. (2014). Characterization of Ectopic Colonies That Form in Widespread Areas of the Nervous System with Neural Stem Cell Transplants into the Site of a Severe Spinal Cord Injury. Journal of Neuroscience, 34(42), 14013-14021. doi:10.1523/jneurosci.3066-14.2014

Stokols, S., & Tuszynski, M. H. (2006). Freeze-dried agarose scaffolds with uniaxial channels stimulate and guide linear axonal growth following spinal cord injury. Biomaterials, 27(3), 443-451. doi:10.1016/j.biomaterials.2005.06.039

Straley, K. S., Foo, C. W. P., & Heilshorn, S. C. (2010). Biomaterial Design Strategies for the Treatment of Spinal Cord Injuries. Journal of Neurotrauma, 27(1), 1-19. doi:10.1089/neu.2009.0948

Theodore, N., Hlubek, R., Danielson, J., Neff, K., Vaickus, L., Ulich, T. R., & Ropper, A. E. (2016). First Human Implantation of a Bioresorbable Polymer Scaffold for Acute Traumatic Spinal Cord Injury. Neurosurgery, 79(2), E305-E312. doi:10.1227/neu.0000000000001283

Tian, L., Prabhakaran, M. P., & Ramakrishna, S. (2015). Strategies for regeneration of components of nervous system: scaffolds, cells and biomolecules. Regenerative Biomaterials, 2(1), 31-45. doi:10.1093/rb/rbu017

Vilariño-Feltrer, G., Martínez-Ramos, C., Monleón-de-la-Fuente, A., Vallés-Lluch, A., Moratal, D., Barcia Albacar, J. A., & Monleón Pradas, M. (2016). Schwann-cell cylinders grown inside hyaluronic-acid tubular scaffolds with gradient porosity. Acta Biomaterialia, 30, 199-211. doi:10.1016/j.actbio.2015.10.040

Vismara, I., Papa, S., Rossi, F., Forloni, G., & Veglianese, P. (2017). Current Options for Cell Therapy in Spinal Cord Injury. Trends in Molecular Medicine, 23(9), 831-849. doi:10.1016/j.molmed.2017.07.005

Wen, Y., Yu, S., Wu, Y., Ju, R., Wang, H., Liu, Y., … Xu, Q. (2015). Spinal cord injury repair by implantation of structured hyaluronic acid scaffold with PLGA microspheres in the rat. Cell and Tissue Research, 364(1), 17-28. doi:10.1007/s00441-015-2298-1

Wilson, J. R., & Fehlings, M. G. (2011). Emerging Approaches to the Surgical Management of Acute Traumatic Spinal Cord Injury. Neurotherapeutics, 8(2), 187-194. doi:10.1007/s13311-011-0027-3

Xie, J., Liu, W., MacEwan, M. R., Bridgman, P. C., & Xia, Y. (2014). Neurite Outgrowth on Electrospun Nanofibers with Uniaxial Alignment: The Effects of Fiber Density, Surface Coating, and Supporting Substrate. ACS Nano, 8(2), 1878-1885. doi:10.1021/nn406363j

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem