- -

Development of Injection-Molded Polylactide Pieces with High Toughness by the Addition of Lactic Acid Oligomer and Characterization of Their Shape Memory Behavior

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Development of Injection-Molded Polylactide Pieces with High Toughness by the Addition of Lactic Acid Oligomer and Characterization of Their Shape Memory Behavior

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Lascano-Aimacaña, Diego Sebastián es_ES
dc.contributor.author Moraga, Giovanni es_ES
dc.contributor.author Ivorra-Martínez, Juan es_ES
dc.contributor.author Rojas-Lema, Sandra Paola es_ES
dc.contributor.author Torres-Giner, Sergio es_ES
dc.contributor.author Balart, Rafael es_ES
dc.contributor.author Boronat, Teodomiro es_ES
dc.contributor.author Quiles-Carrillo, Luis es_ES
dc.date.accessioned 2021-01-30T04:31:58Z
dc.date.available 2021-01-30T04:31:58Z
dc.date.issued 2019-12 es_ES
dc.identifier.uri http://hdl.handle.net/10251/160317
dc.description.abstract [EN] This work reports the effect of the addition of an oligomer of lactic acid (OLA), in the 5-20 wt% range, on the processing and properties of polylactide (PLA) pieces prepared by injection molding. The obtained results suggested that the here-tested OLA mainly performs as an impact modifier for PLA, showing a percentage increase in the impact strength of approximately 171% for the injection-molded pieces containing 15 wt% OLA. A slight plasticization was observed by the decrease of the glass transition temperature (T-g) of PLA of up to 12.5 degrees C. The OLA addition also promoted a reduction of the cold crystallization temperature (T-cc) of more than 10 degrees C due to an increased motion of the biopolymer chains and the potential nucleating effect of the short oligomer chains. Moreover, the shape memory behavior of the PLA samples was characterized by flexural tests with different deformation angles, that is, 15 degrees, 30 degrees, 60 degrees, and 90 degrees. The obtained results confirmed the extraordinary effect of OLA on the shape memory recovery (R-r) of PLA, which increased linearly as the OLA loading increased. In particular, the OLA-containing PLA samples were able to successfully recover over 95% of their original shape for low deformation angles, while they still reached nearly 70% of recovery for the highest angles. Therefore, the present OLA can be successfully used as a novel additive to improve the toughness and shape memory behavior of compostable packaging articles based on PLA in the new frame of the Circular Economy. es_ES
dc.description.sponsorship This research work was funded by the Spanish Ministry of Science, Innovation, and Universities (MICIU) project numbers RTI2018-097249-B-C21 and MAT2017-84909-C2-2-R. L.Q.-C. wants to thank Generalitat Valenciana (GVA) for his FPI grant (ACIF/2016/182) and the Spanish Ministry of Education, Culture, and Sports (MECD) for his FPU grant (FPU15/03812). D.L. thanks Universitat Politècnica de València (UPV) for the grant received through the PAID-01-18 program. S.T.-G. is recipient of a Juan de la Cierva contract (IJCI-2016-29675) from MICIU. S.R.-L. is recipient of a Santiago Grisolía contract (GRISOLIAP/2019/132) from GVA. J.I.-M. wants to thank UPV for an FPI grant PAID-01-19 (SP2019001). Microscopy services of UPV are acknowledged for their help in collecting and analyzing the microscopy images. Authors also thank Condensia Química S.A. for kindly supplying Glyoplast OLA 2. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Polymers es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject PLA es_ES
dc.subject OLA es_ES
dc.subject Impact modifier es_ES
dc.subject Shape memory es_ES
dc.subject Packaging applications es_ES
dc.subject.classification CIENCIA DE LOS MATERIALES E INGENIERIA METALURGICA es_ES
dc.subject.classification INGENIERIA DE LOS PROCESOS DE FABRICACION es_ES
dc.title Development of Injection-Molded Polylactide Pieces with High Toughness by the Addition of Lactic Acid Oligomer and Characterization of Their Shape Memory Behavior es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/polym11122099 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//IJCI-2016-29675/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//PAID-01-18/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-097249-B-C21/ES/ENVASE ACTIVO MULTICAPA TERMOCONFORMABLE DE ALTA BARRERA BASADO EN BIOECONOMIA CIRCULAR/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//SP2019001/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MAT2017-84909-C2-2-R/ES/PROCESADO Y OPTIMIZACION DE MATERIALES AVANZADOS DERIVADOS DE ESTRUCTURAS PROTEICAS Y COMPONENTES LIGNOCELULOSICOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//ACIF%2F2016%2F182/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MECD//FPU15%2F03812/ES/FPU15%2F03812/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//GRISOLIAP%2F2019%2F132/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Tecnología de Materiales - Institut de Tecnologia de Materials es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Ingeniería de Alimentos para el Desarrollo - Institut Universitari d'Enginyeria d'Aliments per al Desenvolupament es_ES
dc.description.bibliographicCitation Lascano-Aimacaña, DS.; Moraga, G.; Ivorra-Martínez, J.; Rojas-Lema, SP.; Torres-Giner, S.; Balart, R.; Boronat, T.... (2019). Development of Injection-Molded Polylactide Pieces with High Toughness by the Addition of Lactic Acid Oligomer and Characterization of Their Shape Memory Behavior. Polymers. 11(12):1-19. https://doi.org/10.3390/polym11122099 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/polym11122099 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 19 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 11 es_ES
dc.description.issue 12 es_ES
dc.identifier.eissn 2073-4360 es_ES
dc.identifier.pmid 31847359 es_ES
dc.identifier.pmcid PMC6960981 es_ES
dc.relation.pasarela S\398970 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Ministerio de Educación, Cultura y Deporte es_ES
dc.description.references Dijkstra, P. J., Du, H., & Feijen, J. (2011). Single site catalysts for stereoselective ring-opening polymerization of lactides. Polym. Chem., 2(3), 520-527. doi:10.1039/c0py00204f es_ES
dc.description.references Quiles-Carrillo, L., Montanes, N., Lagaron, J., Balart, R., & Torres-Giner, S. (2019). Bioactive Multilayer Polylactide Films with Controlled Release Capacity of Gallic Acid Accomplished by Incorporating Electrospun Nanostructured Coatings and Interlayers. Applied Sciences, 9(3), 533. doi:10.3390/app9030533 es_ES
dc.description.references Radusin, T., Torres-Giner, S., Stupar, A., Ristic, I., Miletic, A., Novakovic, A., & Lagaron, J. M. (2019). Preparation, characterization and antimicrobial properties of electrospun polylactide films containing Allium ursinum L. extract. Food Packaging and Shelf Life, 21, 100357. doi:10.1016/j.fpsl.2019.100357 es_ES
dc.description.references Scarfato, P., Di Maio, L., Milana, M. R., Giamberardini, S., Denaro, M., & Incarnato, L. (2017). Performance properties, lactic acid specific migration and swelling by simulant of biodegradable poly(lactic acid)/nanoclay multilayer films for food packaging. Food Additives & Contaminants: Part A, 34(10), 1730-1742. doi:10.1080/19440049.2017.1321786 es_ES
dc.description.references Scarfato, P., Di Maio, L., & Incarnato, L. (2015). Recent advances and migration issues in biodegradable polymers from renewable sources for food packaging. Journal of Applied Polymer Science, 132(48), n/a-n/a. doi:10.1002/app.42597 es_ES
dc.description.references Tawakkal, I. S. M. A., Cran, M. J., Miltz, J., & Bigger, S. W. (2014). A Review of Poly(Lactic Acid)-Based Materials for Antimicrobial Packaging. Journal of Food Science, 79(8), R1477-R1490. doi:10.1111/1750-3841.12534 es_ES
dc.description.references Paula, K. T., Gaál, G., Almeida, G. F. B., Andrade, M. B., Facure, M. H. M., Correa, D. S., … Mendonça, C. R. (2018). Femtosecond laser micromachining of polylactic acid/graphene composites for designing interdigitated microelectrodes for sensor applications. Optics & Laser Technology, 101, 74-79. doi:10.1016/j.optlastec.2017.11.006 es_ES
dc.description.references Jeoung, S. K., Ha, J. U., Ko, Y. K., Kim, B.-R., Yoo, S. E., Lee, K. D., … Lee, P.-C. (2014). Aerobic biodegradability of polyester/polylactic acid composites for automotive NVH parts. International Journal of Precision Engineering and Manufacturing, 15(8), 1703-1707. doi:10.1007/s12541-014-0522-7 es_ES
dc.description.references Finkenstadt, V. L., & Tisserat, B. (2010). Poly(lactic acid) and Osage Orange wood fiber composites for agricultural mulch films. Industrial Crops and Products, 31(2), 316-320. doi:10.1016/j.indcrop.2009.11.012 es_ES
dc.description.references Chang, Y.-C., Chen, Y., Ning, J., Hao, C., Rock, M., Amer, M., … Li, L. (2019). No Such Thing as Trash: A 3D-Printable Polymer Composite Composed of Oil-Extracted Spent Coffee Grounds and Polylactic Acid with Enhanced Impact Toughness. ACS Sustainable Chemistry & Engineering, 7(18), 15304-15310. doi:10.1021/acssuschemeng.9b02527 es_ES
dc.description.references Gao, Y., Li, Y., Hu, X., Wu, W., Wang, Z., Wang, R., & Zhang, L. (2017). Preparation and Properties of Novel Thermoplastic Vulcanizate Based on Bio-Based Polyester/Polylactic Acid, and Its Application in 3D Printing. Polymers, 9(12), 694. doi:10.3390/polym9120694 es_ES
dc.description.references Kumar, S., Singh, R., Singh, T., & Batish, A. (2019). Investigations of polylactic acid reinforced composite feedstock filaments for multimaterial three-dimensional printing applications. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 233(17), 5953-5965. doi:10.1177/0954406219861665 es_ES
dc.description.references Matos, B. D. M., Rocha, V., da Silva, E. J., Moro, F. H., Bottene, A. C., Ribeiro, C. A., … Silva Barud, H. da. (2018). Evaluation of commercially available polylactic acid (PLA) filaments for 3D printing applications. Journal of Thermal Analysis and Calorimetry, 137(2), 555-562. doi:10.1007/s10973-018-7967-3 es_ES
dc.description.references Bayer, I. (2017). Thermomechanical Properties of Polylactic Acid-Graphene Composites: A State-of-the-Art Review for Biomedical Applications. Materials, 10(7), 748. doi:10.3390/ma10070748 es_ES
dc.description.references Pierchala, M. K., Makaremi, M., Tan, H. L., Pushpamalar, J., Muniyandy, S., Solouk, A., … Pasbakhsh, P. (2018). Nanotubes in nanofibers: Antibacterial multilayered polylactic acid/halloysite/gentamicin membranes for bone regeneration application. Applied Clay Science, 160, 95-105. doi:10.1016/j.clay.2017.12.016 es_ES
dc.description.references Yanfang, C., Jiayi, X., Qinggang, T., Zhenlei, Z., Jun, Z., Xiaoyan, X., & Yan, L. (2019). End-Group Functionalization of Polyethylene Glycol-Polylactic Acid Copolymer and Its Application in the Field of Pharmaceutical Carriers. Journal of Biobased Materials and Bioenergy, 13(5), 690-698. doi:10.1166/jbmb.2019.1900 es_ES
dc.description.references Torres-Giner, S., Martinez-Abad, A., Gimeno-Alcañiz, J. V., Ocio, M. J., & Lagaron, J. M. (2011). Controlled Delivery of Gentamicin Antibiotic from Bioactive Electrospun Polylactide-Based Ultrathin Fibers. Advanced Engineering Materials, 14(4), B112-B122. doi:10.1002/adem.201180006 es_ES
dc.description.references Agüero, A., Morcillo, M. del C., Quiles-Carrillo, L., Balart, R., Boronat, T., Lascano, D., … Fenollar, O. (2019). Study of the Influence of the Reprocessing Cycles on the Final Properties of Polylactide Pieces Obtained by Injection Molding. Polymers, 11(12), 1908. doi:10.3390/polym11121908 es_ES
dc.description.references Quiles-Carrillo, L., Montanes, N., Garcia-Garcia, D., Carbonell-Verdu, A., Balart, R., & Torres-Giner, S. (2018). Effect of different compatibilizers on injection-molded green composite pieces based on polylactide filled with almond shell flour. Composites Part B: Engineering, 147, 76-85. doi:10.1016/j.compositesb.2018.04.017 es_ES
dc.description.references Quiles-Carrillo, L., Montanes, N., Pineiro, F., Jorda-Vilaplana, A., & Torres-Giner, S. (2018). Ductility and Toughness Improvement of Injection-Molded Compostable Pieces of Polylactide by Melt Blending with Poly(ε-caprolactone) and Thermoplastic Starch. Materials, 11(11), 2138. doi:10.3390/ma11112138 es_ES
dc.description.references Valerio, O., Pin, J. M., Misra, M., & Mohanty, A. K. (2016). Synthesis of Glycerol-Based Biopolyesters as Toughness Enhancers for Polylactic Acid Bioplastic through Reactive Extrusion. ACS Omega, 1(6), 1284-1295. doi:10.1021/acsomega.6b00325 es_ES
dc.description.references Zhang, B., Bian, X., Xiang, S., Li, G., & Chen, X. (2017). Synthesis of PLLA-based block copolymers for improving melt strength and toughness of PLLA by in situ reactive blending. Polymer Degradation and Stability, 136, 58-70. doi:10.1016/j.polymdegradstab.2016.11.022 es_ES
dc.description.references Zou, J., Qi, Y., Su, L., Wei, Y., Li, Z., & Xu, H. (2018). Synthesis and Characterization of Poly(ester amide)s Consisting of Poly(L-lactic acid) and Poly(butylene succinate) Segments with 2,2′-Bis(2-oxazoline) Chain Extending. Macromolecular Research, 26(13), 1212-1218. doi:10.1007/s13233-019-7018-3 es_ES
dc.description.references Lan, X., Li, X., Liu, Z., He, Z., Yang, W., & Yang, M. (2013). Composition, Morphology and Properties of Poly(lactic acid) and Poly(butylene succinate) Copolymer System via Coupling Reaction. Journal of Macromolecular Science, Part A, 50(8), 861-870. doi:10.1080/10601325.2013.802196 es_ES
dc.description.references Garcia-Campo, M., Quiles-Carrillo, L., Masia, J., Reig-Pérez, M., Montanes, N., & Balart, R. (2017). Environmentally Friendly Compatibilizers from Soybean Oil for Ternary Blends of Poly(lactic acid)-PLA, Poly(ε-caprolactone)-PCL and Poly(3-hydroxybutyrate)-PHB. Materials, 10(11), 1339. doi:10.3390/ma10111339 es_ES
dc.description.references Garcia-Campo, M. J., Quiles-Carrillo, L., Sanchez-Nacher, L., Balart, R., & Montanes, N. (2018). High toughness poly(lactic acid) (PLA) formulations obtained by ternary blends with poly(3-hydroxybutyrate) (PHB) and flexible polyesters from succinic acid. Polymer Bulletin, 76(4), 1839-1859. doi:10.1007/s00289-018-2475-y es_ES
dc.description.references Sathornluck, S., & Choochottiros, C. (2019). Modification of epoxidized natural rubber as a PLA toughening agent. Journal of Applied Polymer Science, 136(48), 48267. doi:10.1002/app.48267 es_ES
dc.description.references Su, S., Kopitzky, R., Tolga, S., & Kabasci, S. (2019). Polylactide (PLA) and Its Blends with Poly(butylene succinate) (PBS): A Brief Review. Polymers, 11(7), 1193. doi:10.3390/polym11071193 es_ES
dc.description.references Zhang, B., Sun, B., Bian, X., Li, G., & Chen, X. (2016). High Melt Strength and High Toughness PLLA/PBS Blends by Copolymerization and in Situ Reactive Compatibilization. Industrial & Engineering Chemistry Research, 56(1), 52-62. doi:10.1021/acs.iecr.6b03151 es_ES
dc.description.references Fortelny, I., Ujcic, A., Fambri, L., & Slouf, M. (2019). Phase Structure, Compatibility, and Toughness of PLA/PCL Blends: A Review. Frontiers in Materials, 6. doi:10.3389/fmats.2019.00206 es_ES
dc.description.references Wang, Y., Mei, Y., Wang, Q., Wei, W., Huang, F., Li, Y., … Zhou, Z. (2019). Improved fracture toughness and ductility of PLA composites by incorporating a small amount of surface-modified helical carbon nanotubes. Composites Part B: Engineering, 162, 54-61. doi:10.1016/j.compositesb.2018.10.060 es_ES
dc.description.references Li, J., Li, J., Feng, D., Zhao, J., Sun, J., & Li, D. (2017). Excellent rheological performance and impact toughness of cellulose nanofibers/PLA/ionomer composite. RSC Advances, 7(46), 28889-28897. doi:10.1039/c7ra04302c es_ES
dc.description.references González‐Ausejo, J., Gámez‐Pérez, J., Balart, R., Lagarón, J. M., & Cabedo, L. (2017). Effect of the addition of sepiolite on the morphology and properties of melt compounded PHBV/PLA blends. Polymer Composites, 40(S1). doi:10.1002/pc.24538 es_ES
dc.description.references Tsou, C.-H., Gao, C., Guzman, M. D., Wu, D.-Y., Hung, W.-S., Yuan, L., … Yeh, J. (2018). Preparation and characterization of poly(lactic acid) with adipate ester added as a plasticizer. Polymers and Polymer Composites, 26(8-9), 446-453. doi:10.1177/0967391118809210 es_ES
dc.description.references Huang, H., Chen, L., Song, G., & Tang, G. (2018). An efficient plasticization method for poly(lactic acid) using combination of liquid-state and solid-state plasticizers. Journal of Applied Polymer Science, 135(36), 46669. doi:10.1002/app.46669 es_ES
dc.description.references Kang, H., Li, Y., Gong, M., Guo, Y., Guo, Z., Fang, Q., & Li, X. (2018). An environmentally sustainable plasticizer toughened polylactide. RSC Advances, 8(21), 11643-11651. doi:10.1039/c7ra13448g es_ES
dc.description.references Carbonell-Verdu, A., Ferri, J. M., Dominici, F., Boronat, T., Sanchez-Nacher, L., Balart, R., & Torre, L. (2018). Manufacturing and compatibilization of PLA/PBAT binary blends by cottonseed oil-based derivatives. Express Polymer Letters, 12(9), 808-823. doi:10.3144/expresspolymlett.2018.69 es_ES
dc.description.references Quiles-Carrillo, L., Blanes-Martínez, M. M., Montanes, N., Fenollar, O., Torres-Giner, S., & Balart, R. (2018). Reactive toughening of injection-molded polylactide pieces using maleinized hemp seed oil. European Polymer Journal, 98, 402-410. doi:10.1016/j.eurpolymj.2017.11.039 es_ES
dc.description.references Quiles-Carrillo, L., Duart, S., Montanes, N., Torres-Giner, S., & Balart, R. (2018). Enhancement of the mechanical and thermal properties of injection-molded polylactide parts by the addition of acrylated epoxidized soybean oil. Materials & Design, 140, 54-63. doi:10.1016/j.matdes.2017.11.031 es_ES
dc.description.references Ferri, J. M., Garcia-Garcia, D., Sánchez-Nacher, L., Fenollar, O., & Balart, R. (2016). The effect of maleinized linseed oil (MLO) on mechanical performance of poly(lactic acid)-thermoplastic starch (PLA-TPS) blends. Carbohydrate Polymers, 147, 60-68. doi:10.1016/j.carbpol.2016.03.082 es_ES
dc.description.references Ferri, J. M., Garcia-Garcia, D., Montanes, N., Fenollar, O., & Balart, R. (2017). The effect of maleinized linseed oil as biobased plasticizer in poly(lactic acid)-based formulations. Polymer International, 66(6), 882-891. doi:10.1002/pi.5329 es_ES
dc.description.references Notta-Cuvier, D., Murariu, M., Odent, J., Delille, R., Bouzouita, A., Raquez, J.-M., … Dubois, P. (2015). Tailoring Polylactide Properties for Automotive Applications: Effects of Co-Addition of Halloysite Nanotubes and Selected Plasticizer. Macromolecular Materials and Engineering, 300(7), 684-698. doi:10.1002/mame.201500032 es_ES
dc.description.references Luzi, F., Dominici, F., Armentano, I., Fortunati, E., Burgos, N., Fiori, S., … Torre, L. (2019). Combined effect of cellulose nanocrystals, carvacrol and oligomeric lactic acid in PLA_PHB polymeric films. Carbohydrate Polymers, 223, 115131. doi:10.1016/j.carbpol.2019.115131 es_ES
dc.description.references Burgos, N., Martino, V. P., & Jiménez, A. (2013). Characterization and ageing study of poly(lactic acid) films plasticized with oligomeric lactic acid. Polymer Degradation and Stability, 98(2), 651-658. doi:10.1016/j.polymdegradstab.2012.11.009 es_ES
dc.description.references Battegazzore, D., Bocchini, S., & Frache, A. (2011). Crystallization kinetics of poly(lactic acid)-talc composites. Express Polymer Letters, 5(10), 849-858. doi:10.3144/expresspolymlett.2011.84 es_ES
dc.description.references Kaygusuz, B., & Özerinç, S. (2019). Improving the ductility of polylactic acid parts produced by fused deposition modeling through polyhydroxyalkanoate additions. Journal of Applied Polymer Science, 136(43), 48154. doi:10.1002/app.48154 es_ES
dc.description.references Lule, Z., & Kim, J. (2019). Nonisothermal Crystallization of Surface-Treated Alumina and Aluminum Nitride-Filled Polylactic Acid Hybrid Composites. Polymers, 11(6), 1077. doi:10.3390/polym11061077 es_ES
dc.description.references Quiles-Carrillo, L., Montanes, N., Sammon, C., Balart, R., & Torres-Giner, S. (2018). Compatibilization of highly sustainable polylactide/almond shell flour composites by reactive extrusion with maleinized linseed oil. Industrial Crops and Products, 111, 878-888. doi:10.1016/j.indcrop.2017.10.062 es_ES
dc.description.references Jing, X., Mi, H.-Y., Peng, X.-F., & Turng, L.-S. (2014). The morphology, properties, and shape memory behavior of polylactic acid/thermoplastic polyurethane blends. Polymer Engineering & Science, 55(1), 70-80. doi:10.1002/pen.23873 es_ES
dc.description.references Zhang, Z., He, Z., Yang, J., Huang, T., Zhang, N., & Wang, Y. (2016). Crystallization controlled shape memory behaviors of dynamically vulcanized poly(l-lactide)/poly(ethylene vinyl acetate) blends. Polymer Testing, 51, 82-92. doi:10.1016/j.polymertesting.2016.03.003 es_ES
dc.description.references Shao, L., Dai, J., Zhang, Z., Yang, J., Zhang, N., Huang, T., & Wang, Y. (2015). Thermal and electroactive shape memory behaviors of poly(l-lactide)/thermoplastic polyurethane blend induced by carbon nanotubes. RSC Advances, 5(123), 101455-101465. doi:10.1039/c5ra20632d es_ES
dc.description.references Ambrosio-Martín, J., Fabra, M. J., Lopez-Rubio, A., & Lagaron, J. M. (2014). An effect of lactic acid oligomers on the barrier properties of polylactide. Journal of Materials Science, 49(8), 2975-2986. doi:10.1007/s10853-013-7929-x es_ES
dc.description.references Courgneau, C., Domenek, S., Guinault, A., Avérous, L., & Ducruet, V. (2011). Analysis of the Structure-Properties Relationships of Different Multiphase Systems Based on Plasticized Poly(Lactic Acid). Journal of Polymers and the Environment, 19(2), 362-371. doi:10.1007/s10924-011-0285-5 es_ES
dc.description.references Fortunati, E., Puglia, D., Iannoni, A., Terenzi, A., Kenny, J. M., & Torre, L. (2017). Processing Conditions, Thermal and Mechanical Responses of Stretchable Poly (Lactic Acid)/Poly (Butylene Succinate) Films. Materials, 10(7), 809. doi:10.3390/ma10070809 es_ES
dc.description.references Ferri, J. M., Samper, M. D., García-Sanoguera, D., Reig, M. J., Fenollar, O., & Balart, R. (2016). Plasticizing effect of biobased epoxidized fatty acid esters on mechanical and thermal properties of poly(lactic acid). Journal of Materials Science, 51(11), 5356-5366. doi:10.1007/s10853-016-9838-2 es_ES
dc.description.references Chee, W. K., Ibrahim, N. A., Zainuddin, N., Abd Rahman, M. F., & Chieng, B. W. (2013). Impact Toughness and Ductility Enhancement of Biodegradable Poly(lactic acid)/Poly(ε-caprolactone) Blends via Addition of Glycidyl Methacrylate. Advances in Materials Science and Engineering, 2013, 1-8. doi:10.1155/2013/976373 es_ES
dc.description.references Xue, B., He, H., Zhu, Z., Li, J., Huang, Z., Wang, G., … Zhan, Z. (2018). A Facile Fabrication of High Toughness Poly(lactic Acid) via Reactive Extrusion with Poly(butylene Succinate) and Ethylene-Methyl Acrylate-Glycidyl Methacrylate. Polymers, 10(12), 1401. doi:10.3390/polym10121401 es_ES
dc.description.references Wang, X., Peng, S., Chen, H., Yu, X., & Zhao, X. (2019). Mechanical properties, rheological behaviors, and phase morphologies of high-toughness PLA/PBAT blends by in-situ reactive compatibilization. Composites Part B: Engineering, 173, 107028. doi:10.1016/j.compositesb.2019.107028 es_ES
dc.description.references Lascano, D., Quiles-Carrillo, L., Torres-Giner, S., Boronat, T., & Montanes, N. (2019). Optimization of the Curing and Post-Curing Conditions for the Manufacturing of Partially Bio-Based Epoxy Resins with Improved Toughness. Polymers, 11(8), 1354. doi:10.3390/polym11081354 es_ES
dc.description.references Burgos, N., Tolaguera, D., Fiori, S., & Jiménez, A. (2013). Synthesis and Characterization of Lactic Acid Oligomers: Evaluation of Performance as Poly(Lactic Acid) Plasticizers. Journal of Polymers and the Environment, 22(2), 227-235. doi:10.1007/s10924-013-0628-5 es_ES
dc.description.references Ljungberg, N., & Wesslén, B. (2002). The effects of plasticizers on the dynamic mechanical and thermal properties of poly(lactic acid). Journal of Applied Polymer Science, 86(5), 1227-1234. doi:10.1002/app.11077 es_ES
dc.description.references Xing, Q., Zhang, X., Dong, X., Liu, G., & Wang, D. (2012). Low-molecular weight aliphatic amides as nucleating agents for poly (L-lactic acid): Conformation variation induced crystallization enhancement. Polymer, 53(11), 2306-2314. doi:10.1016/j.polymer.2012.03.034 es_ES
dc.description.references Maróti, P., Kocsis, B., Ferencz, A., Nyitrai, M., & Lőrinczy, D. (2019). Differential thermal analysis of the antibacterial effect of PLA-based materials planned for 3D printing. Journal of Thermal Analysis and Calorimetry, 139(1), 367-374. doi:10.1007/s10973-019-08377-4 es_ES
dc.description.references Maiza, M., Benaniba, M. T., Quintard, G., & Massardier-Nageotte, V. (2015). Biobased additive plasticizing Polylactic acid (PLA). Polímeros, 25(6), 581-590. doi:10.1590/0104-1428.1986 es_ES
dc.description.references Jia, S., Yu, D., Zhu, Y., Wang, Z., Chen, L., & Fu, L. (2017). Morphology, Crystallization and Thermal Behaviors of PLA-Based Composites: Wonderful Effects of Hybrid GO/PEG via Dynamic Impregnating. Polymers, 9(12), 528. doi:10.3390/polym9100528 es_ES
dc.description.references Shi, X., Zhang, G., Phuong, T., & Lazzeri, A. (2015). Synergistic Effects of Nucleating Agents and Plasticizers on the Crystallization Behavior of Poly(lactic acid). Molecules, 20(1), 1579-1593. doi:10.3390/molecules20011579 es_ES
dc.description.references Lu, X. L., Sun, Z. J., Cai, W., & Gao, Z. Y. (2007). Study on the shape memory effects of poly(l-lactide-co-ε-caprolactone) biodegradable polymers. Journal of Materials Science: Materials in Medicine, 19(1), 395-399. doi:10.1007/s10856-006-0100-3 es_ES
dc.description.references Leonés, A., Sonseca, A., López, D., Fiori, S., & Peponi, L. (2019). Shape memory effect on electrospun PLA-based fibers tailoring their thermal response. European Polymer Journal, 117, 217-226. doi:10.1016/j.eurpolymj.2019.05.014 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem