Auckenthaler, T. S., Onder, C. H., & Geering, H. P. (2004). Aspects of Dynamic Three-Way Catalyst Behaviour Including Oxygen Storage. IFAC Proceedings Volumes, 37(22), 331-336. doi:10.1016/s1474-6670(17)30365-8
Yang, H., Shu, G., Tian, H., Ma, X., Chen, T., & Liu, P. (2018). Optimization of thermoelectric generator (TEG) integrated with three-way catalytic converter (TWC) for harvesting engine’s exhaust waste heat. Applied Thermal Engineering, 144, 628-638. doi:10.1016/j.applthermaleng.2018.07.091
Koltsakis, G. C., Konstantinidis, P. A., & Stamatelos, A. M. (1997). Development and application range of mathematical models for 3-way catalytic converters. Applied Catalysis B: Environmental, 12(2-3), 161-191. doi:10.1016/s0926-3373(96)00073-2
[+]
Auckenthaler, T. S., Onder, C. H., & Geering, H. P. (2004). Aspects of Dynamic Three-Way Catalyst Behaviour Including Oxygen Storage. IFAC Proceedings Volumes, 37(22), 331-336. doi:10.1016/s1474-6670(17)30365-8
Yang, H., Shu, G., Tian, H., Ma, X., Chen, T., & Liu, P. (2018). Optimization of thermoelectric generator (TEG) integrated with three-way catalytic converter (TWC) for harvesting engine’s exhaust waste heat. Applied Thermal Engineering, 144, 628-638. doi:10.1016/j.applthermaleng.2018.07.091
Koltsakis, G. C., Konstantinidis, P. A., & Stamatelos, A. M. (1997). Development and application range of mathematical models for 3-way catalytic converters. Applied Catalysis B: Environmental, 12(2-3), 161-191. doi:10.1016/s0926-3373(96)00073-2
Zygourakis, K. (1989). Transient operation of monolith catalytic converters: a two-dimensional reactor model and the effects of radially nonuniform flow distributions. Chemical Engineering Science, 44(9), 2075-2086. doi:10.1016/0009-2509(89)85143-7
Coxeter, H. S. M. (1993). Cyclotomic integers, nondiscrete tessellations, and quasicrystals. Indagationes Mathematicae, 4(1), 27-38. doi:10.1016/0019-3577(93)90049-5
Konstantas, G., & Stamatelos, A. M. (2007). Modelling three-way catalytic converters: An effort to predict the effect of precious metal loading. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 221(3), 355-373. doi:10.1243/09544070jauto329
Pontikakis, G. N., Konstantas, G. S., & Stamatelos, A. M. (2004). Three-Way Catalytic Converter Modeling as a Modern Engineering Design Tool. Journal of Engineering for Gas Turbines and Power, 126(4), 906-923. doi:10.1115/1.1787506
Kumar, P., Gu, T., Grigoriadis, K., Franchek, M., & Balakotaiah, V. (2014). Spatio-temporal dynamics of oxygen storage and release in a three-way catalytic converter. Chemical Engineering Science, 111, 180-190. doi:10.1016/j.ces.2014.02.014
Auckenthaler, T. S., Onder, C. H., Geering, H. P., & Frauhammer, J. (2004). Modeling of a Three-Way Catalytic Converter with Respect to Fast Transients of λ-Sensor Relevant Exhaust Gas Components. Industrial & Engineering Chemistry Research, 43(16), 4780-4788. doi:10.1021/ie034242u
Nievergeld, A. J. L., Selow, E. R. v., Hoebink, J. H. B. J., & Marin, G. B. (1997). Simulation of a catalytic converter of automotive exhaust gas under dynamic conditions. Dynamics of Surfaces and Reaction Kinetics in Heterogeneous Catalysis, Proceedings of the International Symposium, 449-458. doi:10.1016/s0167-2991(97)80431-4
Oh, S. H., & Cavendish, J. C. (1982). Transients of monolithic catalytic converters. Response to step changes in feedstream temperature as related to controlling automobile emissions. Industrial & Engineering Chemistry Product Research and Development, 21(1), 29-37. doi:10.1021/i300005a006
Chan, S. H., & Hoang, D. L. (1999). Heat transfer and chemical reactions in exhaust system of a cold-start engine. International Journal of Heat and Mass Transfer, 42(22), 4165-4183. doi:10.1016/s0017-9310(99)00064-2
Sabatini, S., Gelmini, S., Hoffman, M. A., & Onori, S. (2017). Design and experimental validation of a physics-based oxygen storage — thermal model for three way catalyst including aging. Control Engineering Practice, 68, 89-101. doi:10.1016/j.conengprac.2017.07.007
Schürholz, K., Brückner, D., Gresser, M., & Abel, D. (2018). Modeling of the Three-way Catalytic Converter by Recurrent Neural Networks. IFAC-PapersOnLine, 51(15), 742-747. doi:10.1016/j.ifacol.2018.09.166
Brandt, E. P., Yanying Wang, & Grizzle, J. W. (2000). Dynamic modeling of a three-way catalyst for SI engine exhaust emission control. IEEE Transactions on Control Systems Technology, 8(5), 767-776. doi:10.1109/87.865850
Shaw, B. T., Fischer, G. D., & Hedrick, J. K. (2002). A SIMPLIFIED COLDSTART CATALYST THERMAL MODEL TO REDUCE HYDROCARBON EMISSIONS. IFAC Proceedings Volumes, 35(1), 307-312. doi:10.3182/20020721-6-es-1901.01519
Bickel, J., Odendall, B., Eigenberger, G., & Nieken, U. (2017). Oxygen storage dominated three-way catalyst modeling for fresh catalysts. Chemical Engineering Science, 160, 34-53. doi:10.1016/j.ces.2016.11.016
Kiwitz, P., Onder, C., & Guzzella, L. (2012). Control-oriented modeling of a three-way catalytic converter with observation of the relative oxygen level profile. Journal of Process Control, 22(6), 984-994. doi:10.1016/j.jprocont.2012.04.014
Kumar, P., Makki, I., Kerns, J., Grigoriadis, K., Franchek, M., & Balakotaiah, V. (2012). A low-dimensional model for describing the oxygen storage capacity and transient behavior of a three-way catalytic converter. Chemical Engineering Science, 73, 373-387. doi:10.1016/j.ces.2011.12.001
Gong, J., Wang, D., Li, J., Currier, N., & Yezerets, A. (2017). Dynamic oxygen storage modeling in a three-way catalyst for natural gas engines: A dual-site and shrinking-core diffusion approach. Applied Catalysis B: Environmental, 203, 936-945. doi:10.1016/j.apcatb.2016.11.005
Ramanathan, K., & Sharma, C. S. (2011). Kinetic Parameters Estimation for Three Way Catalyst Modeling. Industrial & Engineering Chemistry Research, 50(17), 9960-9979. doi:10.1021/ie200726j
Olsson, L., & Andersson, B. (2004). Kinetic Modelling in Automotive Catalysis. Topics in Catalysis, 28(1-4), 89-98. doi:10.1023/b:toca.0000024337.50617.8e
Möller, R., Votsmeier, M., Onder, C., Guzzella, L., & Gieshoff, J. (2009). Is oxygen storage in three-way catalysts an equilibrium controlled process? Applied Catalysis B: Environmental, 91(1-2), 30-38. doi:10.1016/j.apcatb.2009.05.003
Rink, J., Meister, N., Herbst, F., & Votsmeier, M. (2017). Oxygen storage in three-way-catalysts is an equilibrium controlled process: Experimental investigation of the redox thermodynamics. Applied Catalysis B: Environmental, 206, 104-114. doi:10.1016/j.apcatb.2016.12.052
Auckenthaler, T. S., Onder, C. H., & Geering, H. P. (2002). CONTROL-ORIENTED INVESTIGATION OF SWITCH-TYPE AIR/FUEL RATIO SENSORS. IFAC Proceedings Volumes, 35(1), 331-336. doi:10.3182/20020721-6-es-1901.01523
[-]