- -

A new application of Internet of Things and Cloud Services in Analytical Chemistry: Determination of bicarbonate in water

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A new application of Internet of Things and Cloud Services in Analytical Chemistry: Determination of bicarbonate in water

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Capella Hernández, Juan Vicente es_ES
dc.contributor.author Bonastre Pina, Alberto Miguel es_ES
dc.contributor.author Ors Carot, Rafael es_ES
dc.contributor.author Peris Tortajada, Miguel es_ES
dc.date.accessioned 2021-02-03T04:33:39Z
dc.date.available 2021-02-03T04:33:39Z
dc.date.issued 2019-12-02 es_ES
dc.identifier.uri http://hdl.handle.net/10251/160598
dc.description.abstract [EN] In a constantly evolving world, new technologies such as Internet of Things (IoT) and cloud-based services offer great opportunities in many fields. In this paper we propose a new approach to the development of smart sensors using IoT and cloud computing, which open new interesting possibilities in analytical chemistry. According to IoT philosophy, these new sensors are able to integrate the generated data on the existing IoT platforms, so that information may be used whenever needed. Furthermore, the utilization of these technologies permits one to obtain sensors with significantly enhanced features using the information available in the cloud. To validate our new approach, a bicarbonate IoT-based smart sensor has been developed. A classical CO2 ion selective electrode (ISE) utilizes the pH information retrieved from the cloud and then provides an indirect measurement of bicarbonate concentration, which is offered to the cloud. The experimental data obtained are compared to those yielded by three other classical ISEs, with satisfactory results being achieved in most instances. Additionally, this methodology leads to lower-consumption, low-cost bicarbonate sensors capable of being employed within an IoT application, for instance in the continuous monitoring of HCO3- in rivers. Most importantly, this innovative application field of IoT and cloud approaches can be clearly perceived as an indicator for future developments over the short-term. es_ES
dc.description.sponsorship This research was funded by the Spanish Ministerio de Economia y Competitividad, grant number DPI2016-80303-C2-1-P. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Sensors es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Smart sensors es_ES
dc.subject Cloud services es_ES
dc.subject Internet of Things es_ES
dc.subject Bicarbonate es_ES
dc.subject Water analysis es_ES
dc.subject.classification ARQUITECTURA Y TECNOLOGIA DE COMPUTADORES es_ES
dc.subject.classification QUIMICA ANALITICA es_ES
dc.title A new application of Internet of Things and Cloud Services in Analytical Chemistry: Determination of bicarbonate in water es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/s19245528 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//DPI2016-80303-C2-1-P/ES/HACIA EL HOSPITAL INTELIGENTE: INVESTIGACION EN EL DISEÑO DE UNA PLATAFORMA BASADA EN INTERNET DE LAS COSAS Y SU APLICACION EN LA MEJORA DEL CUMPLIMIENTO DE HIGIENE DE MANO/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Capella Hernández, JV.; Bonastre Pina, AM.; Ors Carot, R.; Peris Tortajada, M. (2019). A new application of Internet of Things and Cloud Services in Analytical Chemistry: Determination of bicarbonate in water. Sensors. 19(24):1-13. https://doi.org/10.3390/s19245528 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/s19245528 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 13 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 19 es_ES
dc.description.issue 24 es_ES
dc.identifier.eissn 1424-8220 es_ES
dc.identifier.pmid 31847339 es_ES
dc.identifier.pmcid PMC6960673 es_ES
dc.relation.pasarela S\405881 es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Perry, C. T., Salter, M. A., Harborne, A. R., Crowley, S. F., Jelks, H. L., & Wilson, R. W. (2011). Fish as major carbonate mud producers and missing components of the tropical carbonate factory. Proceedings of the National Academy of Sciences, 108(10), 3865-3869. doi:10.1073/pnas.1015895108 es_ES
dc.description.references Pandolfi, J. M., Connolly, S. R., Marshall, D. J., & Cohen, A. L. (2011). Projecting Coral Reef Futures Under Global Warming and Ocean Acidification. Science, 333(6041), 418-422. doi:10.1126/science.1204794 es_ES
dc.description.references Jaquet, J.-M., Nirel, P., & Martignier, A. (2013). Preliminary investigations on picoplankton-related precipitation of alkaline-earth metal carbonates in meso-oligotrophic lake Geneva (Switzerland). Journal of Limnology, 72(3), 50. doi:10.4081/jlimnol.2013.e50 es_ES
dc.description.references Lewis, C. N., Brown, K. A., Edwards, L. A., Cooper, G., & Findlay, H. S. (2013). Sensitivity to ocean acidification parallels natural pCO2 gradients experienced by Arctic copepods under winter sea ice. Proceedings of the National Academy of Sciences, 110(51), E4960-E4967. doi:10.1073/pnas.1315162110 es_ES
dc.description.references Kaloo, M. A., Sunder Raman, R., & Sankar, J. (2016). Novel structurally tuned DAMN receptor for «in situ» diagnosis of bicarbonate in environmental waters. The Analyst, 141(8), 2367-2370. doi:10.1039/c6an00218h es_ES
dc.description.references Botta, A., de Donato, W., Persico, V., & Pescapé, A. (2016). Integration of Cloud computing and Internet of Things: A survey. Future Generation Computer Systems, 56, 684-700. doi:10.1016/j.future.2015.09.021 es_ES
dc.description.references Capella, J. V., Bonastre, A., Ors, R., & Peris, M. (2014). A step forward in the in-line river monitoring of nitrate by means of a wireless sensor network. Sensors and Actuators B: Chemical, 195, 396-403. doi:10.1016/j.snb.2014.01.039 es_ES
dc.description.references Dang, L. M., Piran, M. J., Han, D., Min, K., & Moon, H. (2019). A Survey on Internet of Things and Cloud Computing for Healthcare. Electronics, 8(7), 768. doi:10.3390/electronics8070768 es_ES
dc.description.references Lopez-Barbosa, N., Gamarra, J. D., & Osma, J. F. (2016). The future point-of-care detection of disease and its data capture and handling. Analytical and Bioanalytical Chemistry, 408(11), 2827-2837. doi:10.1007/s00216-015-9249-2 es_ES
dc.description.references Kassal, P., Steinberg, I. M., & Steinberg, M. D. (2013). Wireless smart tag with potentiometric input for ultra low-power chemical sensing. Sensors and Actuators B: Chemical, 184, 254-259. doi:10.1016/j.snb.2013.04.049 es_ES
dc.description.references Piyare, R., & Lee, S. R. (2013). Towards Internet of Things (IOTS): Integration of Wireless Sensor Network to Cloud Services for Data Collection and Sharing. International journal of Computer Networks & Communications, 5(5), 59-72. doi:10.5121/ijcnc.2013.5505 es_ES
dc.description.references Carminati, M., Mezzera, L., Ferrari, G., Sampietro, M., Turolla, A., Di Mauro, M., & Antonelli, M. (2018). A Smart Sensing Node for Pervasive Water Quality Monitoring with Anti-Fouling Self-Diagnostics. 2018 IEEE International Symposium on Circuits and Systems (ISCAS). doi:10.1109/iscas.2018.8351833 es_ES
dc.description.references Borrego, C., Ginja, J., Coutinho, M., Ribeiro, C., Karatzas, K., Sioumis, T., … Penza, M. (2018). Assessment of air quality microsensors versus reference methods: The EuNetAir Joint Exercise – Part II. Atmospheric Environment, 193, 127-142. doi:10.1016/j.atmosenv.2018.08.028 es_ES
dc.description.references Gervasi, O., Murgante, B., Misra, S., Gavrilova, M. L., Rocha, A. M. A. C., Torre, C., … Apduhan, B. O. (Eds.). (2015). Computational Science and Its Applications -- ICCSA 2015. Lecture Notes in Computer Science. doi:10.1007/978-3-319-21407-8 es_ES
dc.description.references LIU, Y., LIANG, Y., XUE, L., LIU, R., TAO, J., ZHOU, D., … HU, W. (2019). Polystyrene-coated Interdigitated Microelectrode Array to Detect Free Chlorine towards IoT Applications. Analytical Sciences, 35(5), 505-509. doi:10.2116/analsci.18p460 es_ES
dc.description.references Ping, H., Wang, J., Ma, Z., & Du, Y. (2018). Mini-review of application of IoT technology in monitoring agricultural products quality and safety. International Journal of Agricultural and Biological Engineering, 11(5), 35-45. doi:10.25165/j.ijabe.20181105.3092 es_ES
dc.description.references Alreshaid, A. T., Hester, J. G., Su, W., Fang, Y., & Tentzeris, M. M. (2018). Review—Ink-Jet Printed Wireless Liquid and Gas Sensors for IoT, SmartAg and Smart City Applications. Journal of The Electrochemical Society, 165(10), B407-B413. doi:10.1149/2.0341810jes es_ES
dc.description.references Djelouat, H., Amira, A., & Bensaali, F. (2018). Compressive Sensing-Based IoT Applications: A Review. Journal of Sensor and Actuator Networks, 7(4), 45. doi:10.3390/jsan7040045 es_ES
dc.description.references Kassal, P., Steinberg, M. D., & Steinberg, I. M. (2018). Wireless chemical sensors and biosensors: A review. Sensors and Actuators B: Chemical, 266, 228-245. doi:10.1016/j.snb.2018.03.074 es_ES
dc.description.references Alahi, M. E. E., Xie, L., Mukhopadhyay, S., & Burkitt, L. (2017). A Temperature Compensated Smart Nitrate-Sensor for Agricultural Industry. IEEE Transactions on Industrial Electronics, 64(9), 7333-7341. doi:10.1109/tie.2017.2696508 es_ES
dc.description.references FIWARE Foundationhttps://www.fiware.org/ es_ES
dc.description.references Xie, X., & Bakker, E. (2013). Non-Severinghaus Potentiometric Dissolved CO2 Sensor with Improved Characteristics. Analytical Chemistry, 85(3), 1332-1336. doi:10.1021/ac303534v es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem