Mostrar el registro sencillo del ítem
dc.contributor.author | Capella Hernández, Juan Vicente | es_ES |
dc.contributor.author | Bonastre Pina, Alberto Miguel | es_ES |
dc.contributor.author | Ors Carot, Rafael | es_ES |
dc.contributor.author | Peris Tortajada, Miguel | es_ES |
dc.date.accessioned | 2021-02-03T04:33:39Z | |
dc.date.available | 2021-02-03T04:33:39Z | |
dc.date.issued | 2019-12-02 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/160598 | |
dc.description.abstract | [EN] In a constantly evolving world, new technologies such as Internet of Things (IoT) and cloud-based services offer great opportunities in many fields. In this paper we propose a new approach to the development of smart sensors using IoT and cloud computing, which open new interesting possibilities in analytical chemistry. According to IoT philosophy, these new sensors are able to integrate the generated data on the existing IoT platforms, so that information may be used whenever needed. Furthermore, the utilization of these technologies permits one to obtain sensors with significantly enhanced features using the information available in the cloud. To validate our new approach, a bicarbonate IoT-based smart sensor has been developed. A classical CO2 ion selective electrode (ISE) utilizes the pH information retrieved from the cloud and then provides an indirect measurement of bicarbonate concentration, which is offered to the cloud. The experimental data obtained are compared to those yielded by three other classical ISEs, with satisfactory results being achieved in most instances. Additionally, this methodology leads to lower-consumption, low-cost bicarbonate sensors capable of being employed within an IoT application, for instance in the continuous monitoring of HCO3- in rivers. Most importantly, this innovative application field of IoT and cloud approaches can be clearly perceived as an indicator for future developments over the short-term. | es_ES |
dc.description.sponsorship | This research was funded by the Spanish Ministerio de Economia y Competitividad, grant number DPI2016-80303-C2-1-P. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Sensors | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Smart sensors | es_ES |
dc.subject | Cloud services | es_ES |
dc.subject | Internet of Things | es_ES |
dc.subject | Bicarbonate | es_ES |
dc.subject | Water analysis | es_ES |
dc.subject.classification | ARQUITECTURA Y TECNOLOGIA DE COMPUTADORES | es_ES |
dc.subject.classification | QUIMICA ANALITICA | es_ES |
dc.title | A new application of Internet of Things and Cloud Services in Analytical Chemistry: Determination of bicarbonate in water | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/s19245528 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//DPI2016-80303-C2-1-P/ES/HACIA EL HOSPITAL INTELIGENTE: INVESTIGACION EN EL DISEÑO DE UNA PLATAFORMA BASADA EN INTERNET DE LAS COSAS Y SU APLICACION EN LA MEJORA DEL CUMPLIMIENTO DE HIGIENE DE MANO/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Química - Departament de Química | es_ES |
dc.description.bibliographicCitation | Capella Hernández, JV.; Bonastre Pina, AM.; Ors Carot, R.; Peris Tortajada, M. (2019). A new application of Internet of Things and Cloud Services in Analytical Chemistry: Determination of bicarbonate in water. Sensors. 19(24):1-13. https://doi.org/10.3390/s19245528 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/s19245528 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 13 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 19 | es_ES |
dc.description.issue | 24 | es_ES |
dc.identifier.eissn | 1424-8220 | es_ES |
dc.identifier.pmid | 31847339 | es_ES |
dc.identifier.pmcid | PMC6960673 | es_ES |
dc.relation.pasarela | S\405881 | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Perry, C. T., Salter, M. A., Harborne, A. R., Crowley, S. F., Jelks, H. L., & Wilson, R. W. (2011). Fish as major carbonate mud producers and missing components of the tropical carbonate factory. Proceedings of the National Academy of Sciences, 108(10), 3865-3869. doi:10.1073/pnas.1015895108 | es_ES |
dc.description.references | Pandolfi, J. M., Connolly, S. R., Marshall, D. J., & Cohen, A. L. (2011). Projecting Coral Reef Futures Under Global Warming and Ocean Acidification. Science, 333(6041), 418-422. doi:10.1126/science.1204794 | es_ES |
dc.description.references | Jaquet, J.-M., Nirel, P., & Martignier, A. (2013). Preliminary investigations on picoplankton-related precipitation of alkaline-earth metal carbonates in meso-oligotrophic lake Geneva (Switzerland). Journal of Limnology, 72(3), 50. doi:10.4081/jlimnol.2013.e50 | es_ES |
dc.description.references | Lewis, C. N., Brown, K. A., Edwards, L. A., Cooper, G., & Findlay, H. S. (2013). Sensitivity to ocean acidification parallels natural pCO2 gradients experienced by Arctic copepods under winter sea ice. Proceedings of the National Academy of Sciences, 110(51), E4960-E4967. doi:10.1073/pnas.1315162110 | es_ES |
dc.description.references | Kaloo, M. A., Sunder Raman, R., & Sankar, J. (2016). Novel structurally tuned DAMN receptor for «in situ» diagnosis of bicarbonate in environmental waters. The Analyst, 141(8), 2367-2370. doi:10.1039/c6an00218h | es_ES |
dc.description.references | Botta, A., de Donato, W., Persico, V., & Pescapé, A. (2016). Integration of Cloud computing and Internet of Things: A survey. Future Generation Computer Systems, 56, 684-700. doi:10.1016/j.future.2015.09.021 | es_ES |
dc.description.references | Capella, J. V., Bonastre, A., Ors, R., & Peris, M. (2014). A step forward in the in-line river monitoring of nitrate by means of a wireless sensor network. Sensors and Actuators B: Chemical, 195, 396-403. doi:10.1016/j.snb.2014.01.039 | es_ES |
dc.description.references | Dang, L. M., Piran, M. J., Han, D., Min, K., & Moon, H. (2019). A Survey on Internet of Things and Cloud Computing for Healthcare. Electronics, 8(7), 768. doi:10.3390/electronics8070768 | es_ES |
dc.description.references | Lopez-Barbosa, N., Gamarra, J. D., & Osma, J. F. (2016). The future point-of-care detection of disease and its data capture and handling. Analytical and Bioanalytical Chemistry, 408(11), 2827-2837. doi:10.1007/s00216-015-9249-2 | es_ES |
dc.description.references | Kassal, P., Steinberg, I. M., & Steinberg, M. D. (2013). Wireless smart tag with potentiometric input for ultra low-power chemical sensing. Sensors and Actuators B: Chemical, 184, 254-259. doi:10.1016/j.snb.2013.04.049 | es_ES |
dc.description.references | Piyare, R., & Lee, S. R. (2013). Towards Internet of Things (IOTS): Integration of Wireless Sensor Network to Cloud Services for Data Collection and Sharing. International journal of Computer Networks & Communications, 5(5), 59-72. doi:10.5121/ijcnc.2013.5505 | es_ES |
dc.description.references | Carminati, M., Mezzera, L., Ferrari, G., Sampietro, M., Turolla, A., Di Mauro, M., & Antonelli, M. (2018). A Smart Sensing Node for Pervasive Water Quality Monitoring with Anti-Fouling Self-Diagnostics. 2018 IEEE International Symposium on Circuits and Systems (ISCAS). doi:10.1109/iscas.2018.8351833 | es_ES |
dc.description.references | Borrego, C., Ginja, J., Coutinho, M., Ribeiro, C., Karatzas, K., Sioumis, T., … Penza, M. (2018). Assessment of air quality microsensors versus reference methods: The EuNetAir Joint Exercise – Part II. Atmospheric Environment, 193, 127-142. doi:10.1016/j.atmosenv.2018.08.028 | es_ES |
dc.description.references | Gervasi, O., Murgante, B., Misra, S., Gavrilova, M. L., Rocha, A. M. A. C., Torre, C., … Apduhan, B. O. (Eds.). (2015). Computational Science and Its Applications -- ICCSA 2015. Lecture Notes in Computer Science. doi:10.1007/978-3-319-21407-8 | es_ES |
dc.description.references | LIU, Y., LIANG, Y., XUE, L., LIU, R., TAO, J., ZHOU, D., … HU, W. (2019). Polystyrene-coated Interdigitated Microelectrode Array to Detect Free Chlorine towards IoT Applications. Analytical Sciences, 35(5), 505-509. doi:10.2116/analsci.18p460 | es_ES |
dc.description.references | Ping, H., Wang, J., Ma, Z., & Du, Y. (2018). Mini-review of application of IoT technology in monitoring agricultural products quality and safety. International Journal of Agricultural and Biological Engineering, 11(5), 35-45. doi:10.25165/j.ijabe.20181105.3092 | es_ES |
dc.description.references | Alreshaid, A. T., Hester, J. G., Su, W., Fang, Y., & Tentzeris, M. M. (2018). Review—Ink-Jet Printed Wireless Liquid and Gas Sensors for IoT, SmartAg and Smart City Applications. Journal of The Electrochemical Society, 165(10), B407-B413. doi:10.1149/2.0341810jes | es_ES |
dc.description.references | Djelouat, H., Amira, A., & Bensaali, F. (2018). Compressive Sensing-Based IoT Applications: A Review. Journal of Sensor and Actuator Networks, 7(4), 45. doi:10.3390/jsan7040045 | es_ES |
dc.description.references | Kassal, P., Steinberg, M. D., & Steinberg, I. M. (2018). Wireless chemical sensors and biosensors: A review. Sensors and Actuators B: Chemical, 266, 228-245. doi:10.1016/j.snb.2018.03.074 | es_ES |
dc.description.references | Alahi, M. E. E., Xie, L., Mukhopadhyay, S., & Burkitt, L. (2017). A Temperature Compensated Smart Nitrate-Sensor for Agricultural Industry. IEEE Transactions on Industrial Electronics, 64(9), 7333-7341. doi:10.1109/tie.2017.2696508 | es_ES |
dc.description.references | FIWARE Foundationhttps://www.fiware.org/ | es_ES |
dc.description.references | Xie, X., & Bakker, E. (2013). Non-Severinghaus Potentiometric Dissolved CO2 Sensor with Improved Characteristics. Analytical Chemistry, 85(3), 1332-1336. doi:10.1021/ac303534v | es_ES |