- -

ABA inhibits myristoylation and induces shuttling of the RGLG1 E3 ligase to promote nuclear degradation of PP2CA

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

ABA inhibits myristoylation and induces shuttling of the RGLG1 E3 ligase to promote nuclear degradation of PP2CA

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Belda Palazón, Borja es_ES
dc.contributor.author Julian, Jose es_ES
dc.contributor.author Coego, Alberto es_ES
dc.contributor.author Wu, Qian es_ES
dc.contributor.author Zhang, Xu es_ES
dc.contributor.author Batistic, Oliver es_ES
dc.contributor.author Alquraishi, Saleh A. es_ES
dc.contributor.author Kudla, Joerg es_ES
dc.contributor.author An, Chengcai es_ES
dc.contributor.author Rodríguez Egea, Pedro Luís es_ES
dc.date.accessioned 2021-02-03T04:33:41Z
dc.date.available 2021-02-03T04:33:41Z
dc.date.issued 2019-06 es_ES
dc.identifier.issn 0960-7412 es_ES
dc.identifier.uri http://hdl.handle.net/10251/160599
dc.description.abstract [EN] Hormone- and stress-induced shuttling of signaling or regulatory proteins is an important cellular mechanism to modulate hormone signaling and cope with abiotic stress. Hormone-induced ubiquitination plays a crucial role to determine half-life of key negative regulators of hormone signaling. For ABA signaling, degradation of clade A PP2Cs, such as PP2CA or ABI1, is a complementary mechanism to PYR/PYL/RCAR-mediated inhibition of PP2C activity. ABA promotes the degradation of PP2CA through the RGLG1 E3 ligase, although it is not known how ABA enhances the interaction of RGLG1 with PP2CA given they are predominantly found in plasma membrane and nucleus, respectively. We demonstrate that ABA modifies the subcellular localization of RGLG1 and promotes nuclear interaction with PP2CA. We found RGLG1 is myristoylated in vivo, which facilitates its attachment to plasma membrane. ABA inhibits myristoylation of RGLG1 through downregulation of Nmyristoyltransferase1 (NMT1) and promotes nuclear translocation of RGLG1 in a cycloheximide-insensitive manner. Enhanced nuclear recruitment of the E3 ligase was also promoted by increasing PP2CA protein levels and the formation of RGLG1-receptor-phosphatase complexes. We show that RGLG1Gly2Ala -mutated in the Nterminal myristoylation site- shows constitutive nuclear localization and causes enhanced response to ABA and salt/osmotic stress. RGLG1/5 can interact with certain monomeric ABA receptors, which facilitates the formation of nuclear complexes such as RGLG1-PP2CA-PYL8. In summary, we provide evidence that an E3 ligase can dynamically re-localize in response to both ABA and increased levels of its target, which reveals a mechanism to explain how ABA enhances RGLG1-PP2CA interaction and hence PP2CA degradation. es_ES
dc.description.sponsorship Work in P.L.R.'s laboratory was supported by the Ministerio de Ciencia e Innovacion, Fondo Europeo de Desarrollo Regional and Consejo Superior de Investigaciones Cientificas through grants BIO2014-52537-R and BIO2017-82503-R. This work was also funded by grants from the Deutsche Forschungsgemeinschaft (DFG) Ku931/4-1 to J. K., and BA4742/1-2 to O.B. B.B. was funded by Programa VALi+ d GVA APOSTD/2017/039. J.J. was supported by an FPI contract from MINECO es_ES
dc.language Inglés es_ES
dc.publisher Blackwell Publishing es_ES
dc.relation.ispartof The Plant Journal es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject ABA signaling es_ES
dc.subject RGLG1 es_ES
dc.subject E3 ligase es_ES
dc.subject PP2C es_ES
dc.subject Ubiquitination es_ES
dc.subject Myristoylation es_ES
dc.subject Shuttling es_ES
dc.subject Arabidopsis thaliana es_ES
dc.subject.classification BIOQUIMICA Y BIOLOGIA MOLECULAR es_ES
dc.title ABA inhibits myristoylation and induces shuttling of the RGLG1 E3 ligase to promote nuclear degradation of PP2CA es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1111/tpj.14274 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//BIO2014-52537-R/ES/REGULACION DE LA SEÑALIZACION DEL ABA MEDIANTE MECHANISMOS QUE AFECTAN LOCALIZACION SUBCELULAR, VIDA MEDIA Y ACTIVIDAD DE RECEPTORES PARA REFORZAR TOLERANCIA VEGETAL A SEQUIA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/BIO2017-82503-R/ES/REGULACION DE LA SEÑALIZACION DEL ABA Y TOLERANCIA A SEQUIA MEDIANTE E3 UBIQUITIN LIGASAS QUE REGULAN EL RECAMBIO DE RECEPTORES Y FOSFATASAS 2C/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//APOSTD%2F2017%2F039/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/DFG//Ku931%2F4-1/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/DFG//BA4742%2F1-2/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes es_ES
dc.description.bibliographicCitation Belda Palazón, B.; Julian, J.; Coego, A.; Wu, Q.; Zhang, X.; Batistic, O.; Alquraishi, SA.... (2019). ABA inhibits myristoylation and induces shuttling of the RGLG1 E3 ligase to promote nuclear degradation of PP2CA. The Plant Journal. 98(5):813-825. https://doi.org/10.1111/tpj.14274 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1111/tpj.14274 es_ES
dc.description.upvformatpinicio 813 es_ES
dc.description.upvformatpfin 825 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 98 es_ES
dc.description.issue 5 es_ES
dc.identifier.pmid 30730075 es_ES
dc.relation.pasarela S\377948 es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Deutsche Forschungsgemeinschaft es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Consejo Superior de Investigaciones Científicas es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references Antoni, R., Gonzalez-Guzman, M., Rodriguez, L., Rodrigues, A., Pizzio, G. A., & Rodriguez, P. L. (2011). Selective Inhibition of Clade A Phosphatases Type 2C by PYR/PYL/RCAR Abscisic Acid Receptors    . Plant Physiology, 158(2), 970-980. doi:10.1104/pp.111.188623 es_ES
dc.description.references Antoni, R., Gonzalez-Guzman, M., Rodriguez, L., Peirats-Llobet, M., Pizzio, G. A., Fernandez, M. A., … Rodriguez, P. L. (2012). PYRABACTIN RESISTANCE1-LIKE8 Plays an Important Role for the Regulation of Abscisic Acid Signaling in Root      . Plant Physiology, 161(2), 931-941. doi:10.1104/pp.112.208678 es_ES
dc.description.references Belda-Palazon, B., Gonzalez-Garcia, M.-P., Lozano-Juste, J., Coego, A., Antoni, R., Julian, J., … Rodriguez, P. L. (2018). PYL8 mediates ABA perception in the root through non-cell-autonomous and ligand-stabilization–based mechanisms. Proceedings of the National Academy of Sciences, 115(50), E11857-E11863. doi:10.1073/pnas.1815410115 es_ES
dc.description.references Bhaskara, G. B., Nguyen, T. T., & Verslues, P. E. (2012). Unique Drought Resistance Functions of the Highly ABA-Induced Clade A Protein Phosphatase 2Cs    . Plant Physiology, 160(1), 379-395. doi:10.1104/pp.112.202408 es_ES
dc.description.references Bigeard, J., & Hirt, H. (2018). Nuclear Signaling of Plant MAPKs. Frontiers in Plant Science, 9. doi:10.3389/fpls.2018.00469 es_ES
dc.description.references Boisson, B., Giglione, C., & Meinnel, T. (2003). Unexpected Protein Families Including Cell Defense Components Feature in the N-Myristoylome of a Higher Eukaryote. Journal of Biological Chemistry, 278(44), 43418-43429. doi:10.1074/jbc.m307321200 es_ES
dc.description.references Burnaevskiy, N., Fox, T. G., Plymire, D. A., Ertelt, J. M., Weigele, B. A., Selyunin, A. S., … Alto, N. M. (2013). Proteolytic elimination of N-myristoyl modifications by the Shigella virulence factor IpaJ. Nature, 496(7443), 106-109. doi:10.1038/nature12004 es_ES
dc.description.references Burnaevskiy, N., Peng, T., Reddick, L. E., Hang, H. C., & Alto, N. M. (2015). Myristoylome Profiling Reveals a Concerted Mechanism of ARF GTPase Deacylation by the Bacterial Protease IpaJ. Molecular Cell, 58(1), 110-122. doi:10.1016/j.molcel.2015.01.040 es_ES
dc.description.references Chaumet, A., Wright, G. D., Seet, S. H., Tham, K. M., Gounko, N. V., & Bard, F. (2015). Nuclear envelope-associated endosomes deliver surface proteins to the nucleus. Nature Communications, 6(1). doi:10.1038/ncomms9218 es_ES
dc.description.references Cheng, M.-C., Hsieh, E.-J., Chen, J.-H., Chen, H.-Y., & Lin, T.-P. (2011). Arabidopsis RGLG2, Functioning as a RING E3 Ligase, Interacts with AtERF53 and Negatively Regulates the Plant Drought Stress Response    . Plant Physiology, 158(1), 363-375. doi:10.1104/pp.111.189738 es_ES
dc.description.references Clough, S. J., & Bent, A. F. (1998). Floral dip: a simplified method forAgrobacterium-mediated transformation ofArabidopsis thaliana. The Plant Journal, 16(6), 735-743. doi:10.1046/j.1365-313x.1998.00343.x es_ES
dc.description.references Curtis, M. D., & Grossniklaus, U. (2003). A Gateway Cloning Vector Set for High-Throughput Functional Analysis of Genes in Planta. Plant Physiology, 133(2), 462-469. doi:10.1104/pp.103.027979 es_ES
dc.description.references Cutler, S. R., Rodriguez, P. L., Finkelstein, R. R., & Abrams, S. R. (2010). Abscisic Acid: Emergence of a Core Signaling Network. Annual Review of Plant Biology, 61(1), 651-679. doi:10.1146/annurev-arplant-042809-112122 es_ES
dc.description.references Edel, K. H., & Kudla, J. (2016). Integration of calcium and ABA signaling. Current Opinion in Plant Biology, 33, 83-91. doi:10.1016/j.pbi.2016.06.010 es_ES
dc.description.references French, A. P., Mills, S., Swarup, R., Bennett, M. J., & Pridmore, T. P. (2008). Colocalization of fluorescent markers in confocal microscope images of plant cells. Nature Protocols, 3(4), 619-628. doi:10.1038/nprot.2008.31 es_ES
dc.description.references Gehl, C., Waadt, R., Kudla, J., Mendel, R.-R., & Hänsch, R. (2009). New GATEWAY vectors for High Throughput Analyses of Protein–Protein Interactions by Bimolecular Fluorescence Complementation. Molecular Plant, 2(5), 1051-1058. doi:10.1093/mp/ssp040 es_ES
dc.description.references Herranz, M. C., Pallas, V., & Aparicio, F. (2012). Multifunctional Roles for the N-Terminal Basic Motif of Alfalfa mosaic virus Coat Protein: Nucleolar/Cytoplasmic Shuttling, Modulation of RNA-Binding Activity, and Virion Formation. Molecular Plant-Microbe Interactions®, 25(8), 1093-1103. doi:10.1094/mpmi-04-12-0079-r es_ES
dc.description.references Hornáček, M., Kováčik, L., Mazel, T., Cmarko, D., Bártová, E., Raška, I., & Smirnov, E. (2017). Fluctuations of pol I and fibrillarin contents of the nucleoli. Nucleus, 8(4), 421-432. doi:10.1080/19491034.2017.1306160 es_ES
dc.description.references Irigoyen, M. L., Iniesto, E., Rodriguez, L., Puga, M. I., Yanagawa, Y., Pick, E., … Rubio, V. (2014). Targeted Degradation of Abscisic Acid Receptors Is Mediated by the Ubiquitin Ligase Substrate Adaptor DDA1 in Arabidopsis. The Plant Cell, 26(2), 712-728. doi:10.1105/tpc.113.122234 es_ES
dc.description.references Kong, L., Cheng, J., Zhu, Y., Ding, Y., Meng, J., Chen, Z., … Gong, Z. (2015). Degradation of the ABA co-receptor ABI1 by PUB12/13 U-box E3 ligases. Nature Communications, 6(1). doi:10.1038/ncomms9630 es_ES
dc.description.references Kuhn, J. M., Boisson-Dernier, A., Dizon, M. B., Maktabi, M. H., & Schroeder, J. I. (2005). The Protein Phosphatase AtPP2CA Negatively Regulates Abscisic Acid Signal Transduction in Arabidopsis, and Effects of abh1 on AtPP2CA mRNA  . Plant Physiology, 140(1), 127-139. doi:10.1104/pp.105.070318 es_ES
dc.description.references Lee, S. C., Lan, W., Buchanan, B. B., & Luan, S. (2009). A protein kinase-phosphatase pair interacts with an ion channel to regulate ABA signaling in plant guard cells. Proceedings of the National Academy of Sciences, 106(50), 21419-21424. doi:10.1073/pnas.0910601106 es_ES
dc.description.references Lee, H.-J., Park, Y.-J., Seo, P. J., Kim, J.-H., Sim, H.-J., Kim, S.-G., & Park, C.-M. (2015). Systemic Immunity Requires SnRK2.8-Mediated Nuclear Import of NPR1 in Arabidopsis. The Plant Cell, 27(12), 3425-3438. doi:10.1105/tpc.15.00371 es_ES
dc.description.references Leitner, J., Petrasek, J., Tomanov, K., Retzer, K., Parezova, M., Korbei, B., … Luschnig, C. (2012). Lysine63-linked ubiquitylation of PIN2 auxin carrier protein governs hormonally controlled adaptation of Arabidopsis root growth. Proceedings of the National Academy of Sciences, 109(21), 8322-8327. doi:10.1073/pnas.1200824109 es_ES
dc.description.references Li, W., & Schmidt, W. (2010). A lysine-63-linked ubiquitin chain-forming conjugase, UBC13, promotes the developmental responses to iron deficiency in Arabidopsis roots. The Plant Journal, 62(2), 330-343. doi:10.1111/j.1365-313x.2010.04150.x es_ES
dc.description.references Lumba, S., Cutler, S., & McCourt, P. (2010). Plant Nuclear Hormone Receptors: A Role for Small Molecules in Protein-Protein Interactions. Annual Review of Cell and Developmental Biology, 26(1), 445-469. doi:10.1146/annurev-cellbio-100109-103956 es_ES
dc.description.references Lynch, T., Erickson, B. J., & Finkelstein, R. R. (2012). Direct interactions of ABA-insensitive(ABI)-clade protein phosphatase(PP)2Cs with calcium-dependent protein kinases and ABA response element-binding bZIPs may contribute to turning off ABA response. Plant Molecular Biology, 80(6), 647-658. doi:10.1007/s11103-012-9973-3 es_ES
dc.description.references Majeran, W., Le Caer, J.-P., Ponnala, L., Meinnel, T., & Giglione, C. (2018). Targeted Profiling of Arabidopsis thaliana Subproteomes Illuminates Co- and Posttranslationally N-Terminal Myristoylated Proteins. The Plant Cell, 30(3), 543-562. doi:10.1105/tpc.17.00523 es_ES
dc.description.references Moes, D., Himmelbach, A., Korte, A., Haberer, G., & Grill, E. (2008). Nuclear localization of the mutant protein phosphatase abi1 is required for insensitivity towards ABA responses in Arabidopsis. The Plant Journal, 54(5), 806-819. doi:10.1111/j.1365-313x.2008.03454.x es_ES
dc.description.references Moreno-Alvero, M., Yunta, C., Gonzalez-Guzman, M., Lozano-Juste, J., Benavente, J. L., Arbona, V., … Albert, A. (2017). Structure of Ligand-Bound Intermediates of Crop ABA Receptors Highlights PP2C as Necessary ABA Co-receptor. Molecular Plant, 10(9), 1250-1253. doi:10.1016/j.molp.2017.07.004 es_ES
dc.description.references NAKAGAWA, T., SUZUKI, T., MURATA, S., NAKAMURA, S., HINO, T., MAEO, K., … ISHIGURO, S. (2007). Improved Gateway Binary Vectors: High-Performance Vectors for Creation of Fusion Constructs in Transgenic Analysis of Plants. Bioscience, Biotechnology, and Biochemistry, 71(8), 2095-2100. doi:10.1271/bbb.70216 es_ES
dc.description.references Peirats-Llobet, M., Han, S.-K., Gonzalez-Guzman, M., Jeong, C. W., Rodriguez, L., Belda-Palazon, B., … Rodriguez, P. L. (2016). A Direct Link between Abscisic Acid Sensing and the Chromatin-Remodeling ATPase BRAHMA via Core ABA Signaling Pathway Components. Molecular Plant, 9(1), 136-147. doi:10.1016/j.molp.2015.10.003 es_ES
dc.description.references Pierre, M., Traverso, J. A., Boisson, B., Domenichini, S., Bouchez, D., Giglione, C., & Meinnel, T. (2007). N-Myristoylation Regulates the SnRK1 Pathway inArabidopsis. The Plant Cell, 19(9), 2804-2821. doi:10.1105/tpc.107.051870 es_ES
dc.description.references Pizzio, G. A., Rodriguez, L., Antoni, R., Gonzalez-Guzman, M., Yunta, C., Merilo, E., … Rodriguez, P. L. (2013). The PYL4 A194T Mutant Uncovers a Key Role of PYR1-LIKE4/PROTEIN PHOSPHATASE 2CA Interaction for Abscisic Acid Signaling and Plant Drought Resistance      . Plant Physiology, 163(1), 441-455. doi:10.1104/pp.113.224162 es_ES
dc.description.references Rodriguez, L., Gonzalez-Guzman, M., Diaz, M., Rodrigues, A., Izquierdo-Garcia, A. C., Peirats-Llobet, M., … Rodriguez, P. L. (2014). C2-Domain Abscisic Acid-Related Proteins Mediate the Interaction of PYR/PYL/RCAR Abscisic Acid Receptors with the Plasma Membrane and Regulate Abscisic Acid Sensitivity in Arabidopsis. The Plant Cell, 26(12), 4802-4820. doi:10.1105/tpc.114.129973 es_ES
dc.description.references Romero-Barrios, N., & Vert, G. (2017). Proteasome-independent functions of lysine-63 polyubiquitination in plants. New Phytologist, 217(3), 995-1011. doi:10.1111/nph.14915 es_ES
dc.description.references Rubio, S., Rodrigues, A., Saez, A., Dizon, M. B., Galle, A., Kim, T.-H., … Rodriguez, P. L. (2009). Triple Loss of Function of Protein Phosphatases Type 2C Leads to Partial Constitutive Response to Endogenous Abscisic Acid      . Plant Physiology, 150(3), 1345-1355. doi:10.1104/pp.109.137174 es_ES
dc.description.references Saez, A., Rodrigues, A., Santiago, J., Rubio, S., & Rodriguez, P. L. (2008). HAB1–SWI3B Interaction Reveals a Link between Abscisic Acid Signaling and Putative SWI/SNF Chromatin-Remodeling Complexes in Arabidopsis. The Plant Cell, 20(11), 2972-2988. doi:10.1105/tpc.107.056705 es_ES
dc.description.references Santiago, J., Rodrigues, A., Saez, A., Rubio, S., Antoni, R., Dupeux, F., … Rodriguez, P. L. (2009). Modulation of drought resistance by the abscisic acid receptor PYL5 through inhibition of clade A PP2Cs. The Plant Journal, 60(4), 575-588. doi:10.1111/j.1365-313x.2009.03981.x es_ES
dc.description.references Santiago, J., Dupeux, F., Round, A., Antoni, R., Park, S.-Y., Jamin, M., … Márquez, J. A. (2009). The abscisic acid receptor PYR1 in complex with abscisic acid. Nature, 462(7273), 665-668. doi:10.1038/nature08591 es_ES
dc.description.references Schapire, A. L., Voigt, B., Jasik, J., Rosado, A., Lopez-Cobollo, R., Menzel, D., … Botella, M. A. (2008). Arabidopsis Synaptotagmin 1 Is Required for the Maintenance of Plasma Membrane Integrity and Cell Viability. The Plant Cell, 20(12), 3374-3388. doi:10.1105/tpc.108.063859 es_ES
dc.description.references Sheen, J. (1998). Mutational analysis of protein phosphatase 2C involved in abscisic acid signal transduction in higher plants. Proceedings of the National Academy of Sciences, 95(3), 975-980. doi:10.1073/pnas.95.3.975 es_ES
dc.description.references Tischer, S. V., Wunschel, C., Papacek, M., Kleigrewe, K., Hofmann, T., Christmann, A., & Grill, E. (2017). Combinatorial interaction network of abscisic acid receptors and coreceptors fromArabidopsis thaliana. Proceedings of the National Academy of Sciences, 114(38), 10280-10285. doi:10.1073/pnas.1706593114 es_ES
dc.description.references Turnbull, D., & Hemsley, P. A. (2017). Fats and function: protein lipid modifications in plant cell signalling. Current Opinion in Plant Biology, 40, 63-70. doi:10.1016/j.pbi.2017.07.007 es_ES
dc.description.references Umezawa, T., Sugiyama, N., Mizoguchi, M., Hayashi, S., Myouga, F., Yamaguchi-Shinozaki, K., … Shinozaki, K. (2009). Type 2C protein phosphatases directly regulate abscisic acid-activated protein kinases in Arabidopsis. Proceedings of the National Academy of Sciences, 106(41), 17588-17593. doi:10.1073/pnas.0907095106 es_ES
dc.description.references Vlad, F., Rubio, S., Rodrigues, A., Sirichandra, C., Belin, C., Robert, N., … Merlot, S. (2009). Protein Phosphatases 2C Regulate the Activation of the Snf1-Related Kinase OST1 by Abscisic Acid inArabidopsis . The Plant Cell, 21(10), 3170-3184. doi:10.1105/tpc.109.069179 es_ES
dc.description.references Wu, C., Feng, J., Wang, R., Liu, H., Yang, H., Rodriguez, P. L., … Wang, D. (2012). HRS1 Acts as a Negative Regulator of Abscisic Acid Signaling to Promote Timely Germination of Arabidopsis Seeds. PLoS ONE, 7(4), e35764. doi:10.1371/journal.pone.0035764 es_ES
dc.description.references Wu, Q., Zhang, X., Peirats-Llobet, M., Belda-Palazon, B., Wang, X., Cui, S., … An, C. (2016). Ubiquitin Ligases RGLG1 and RGLG5 Regulate Abscisic Acid Signaling by Controlling the Turnover of Phosphatase PP2CA. The Plant Cell, 28(9), 2178-2196. doi:10.1105/tpc.16.00364 es_ES
dc.description.references Yin, X.-J., Volk, S., Ljung, K., Mehlmer, N., Dolezal, K., Ditengou, F., … Bachmair, A. (2007). Ubiquitin Lysine 63 Chain–Forming Ligases Regulate Apical Dominance in Arabidopsis. The Plant Cell, 19(6), 1898-1911. doi:10.1105/tpc.107.052035 es_ES
dc.description.references Yoshida, T., Nishimura, N., Kitahata, N., Kuromori, T., Ito, T., Asami, T., … Hirayama, T. (2005). ABA-Hypersensitive Germination3 Encodes a Protein Phosphatase 2C (AtPP2CA) That Strongly Regulates Abscisic Acid Signaling during Germination among Arabidopsis Protein Phosphatase 2Cs. Plant Physiology, 140(1), 115-126. doi:10.1104/pp.105.070128 es_ES
dc.description.references Zhang, X., Wu, Q., Ren, J., Qian, W., He, S., Huang, K., … An, C. (2012). Two Novel RING-Type Ubiquitin Ligases, RGLG3 and RGLG4, Are Essential for Jasmonate-Mediated Responses in Arabidopsis      . Plant Physiology, 160(2), 808-822. doi:10.1104/pp.112.203422 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem