- -

Deep Learning in Aeronautics: Air Traffic Trajectory Classification Based on Weather Reports

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Deep Learning in Aeronautics: Air Traffic Trajectory Classification Based on Weather Reports

Mostrar el registro completo del ítem

Jiménez-Campfens, N.; Colomer, A.; Núñez, J.; Mogollón, JM.; Rodríguez, AL.; Naranjo Ornedo, V. (2020). Deep Learning in Aeronautics: Air Traffic Trajectory Classification Based on Weather Reports. Springer. 148-155. https://doi.org/10.1007/978-3-030-62365-4_14

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/160616

Ficheros en el ítem

Metadatos del ítem

Título: Deep Learning in Aeronautics: Air Traffic Trajectory Classification Based on Weather Reports
Autor: Jiménez-Campfens, Néstor Colomer, Adrián Núñez, Javier Mogollón, Juan Manuel Rodríguez, Antonio L. Naranjo Ornedo, Valeriana
Entidad UPV: Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions
Fecha difusión:
Resumen:
[EN] New paradigms in aviation, as the expected shortage of qualified pilots and the increasing number of flights worldwide, present big challenges to aeronautic enterprises and regulators. In this sense, a concept known ...[+]
Palabras clave: Air Traffic Management , Weather reports , METAR , Trajectory prediction , Deep learning
Derechos de uso: Reserva de todos los derechos
Fuente:
Intelligent Data Engineering and Automated Learning ¿ IDEAL 2020.
DOI: 10.1007/978-3-030-62365-4_14
Editorial:
Springer
Versión del editor: https://doi.org/10.1007/978-3-030-62365-4_14
Título del congreso: 21st International Conference on Intelligent Data Engineering and Automated Learning (IDEAL 2020)
Lugar del congreso: Online
Fecha congreso: Noviembre 04-06,2020
Serie: Lecture Notes in Computer Science;12490
Código del Proyecto:
info:eu-repo/grantAgreement/EC/H2020/831884/EU/HUMAN AIRCRAFT ROADMAP FOR VIRTUAL INTELLIGENT SYSTEM/
Agradecimientos:
This work has received funding from the Clean Sky 2 Joint Undertaking (JU) under grant agreement No 831884. The Titan V used for this research was donated by the NVIDIA Corporation
Tipo: Comunicación en congreso

References

Pilot and technical outlook: Seattle. Boeing Commercial Airplanes, WA (2015)

Wolter, C.A., Gore, B.F.: NASA/TM-2015-218480: A validated task analysis of the Single Pilot Operations concept, no. January 2015 (2015)

Harris, D.: A human-centred design agenda for the development of single crew operated commercial aircraft. Aircr. Eng. Aerosp. Technol. 79(5), 518–526 (2007) [+]
Pilot and technical outlook: Seattle. Boeing Commercial Airplanes, WA (2015)

Wolter, C.A., Gore, B.F.: NASA/TM-2015-218480: A validated task analysis of the Single Pilot Operations concept, no. January 2015 (2015)

Harris, D.: A human-centred design agenda for the development of single crew operated commercial aircraft. Aircr. Eng. Aerosp. Technol. 79(5), 518–526 (2007)

Bailey, R.E., Kramer, L.J., Kennedy, K.D., Stephens, C.L., Etherington, T.J.: An assessment of reduced crew and single pilot operations in commercial transport aircraft operations. In: AIAA/IEEE Digital Avionics System Conference - Proceedings, vol. 2017-September, no. February 2018 (2017)

Lachter, J., Brandt, S.L., Battiste, V., Ligda, S.V., Matessa, M., Johnson, W.W.: Toward single pilot operations: developing a ground station. In: Proceedings of International Conference on Human-Computer Interactive Aerospace, August (2014)

Comerford, D., Brandt, S.L., Mogford, R.: NASA/CP - 2013–216513 NASA’s Single -Pilot Operations Technical Interchange Meeting: Proceedings and Findings, April, p. 89 (2013)

Durand, N., Alliot, J.M., Médioni, F.: Neural nets trained by genetic algorithms for collision avoidance. Appl. Intell. 13(3), 205–213 (2000)

Choi, S., Kim, Y.J., Briceno, S., Mavris, D.: Prediction of weather-induced airline delays based on machine learning algorithms. In: 2016 IEEE/AIAA 35th Digital Avionics Systems Conference (DASC), pp. 1–6. IEEE, September 2016

Gui, G., Liu, F., Sun, J., Yang, J., Zhou, Z., Zhao, D.: Flight delay prediction based on aviation big data and machine learning. IEEE Trans. Veh. Technol. 69, 140–150 (2019)

Liu, Y., Hansen, M.: Predicting aircraft trajectories: a deep generative convolutional recurrent neural networks approach. arXiv preprint arXiv:1812.11670 (2018)

Shi, Z., Xu, M., Pan, Q., Yan, B., Zhang, H.: LSTM-based flight trajectory prediction. In: 2018 IEEE International Joint Conference on Neural Networks (IJCNN), pp. 1–8, July 2018

Bosson, C.D., Nikoleris, T.: Supervised learning applied to air traffic trajectory classification. In: 2018 AIAA Information Systems-AIAA Infotech@ Aerospace, p. 1637 (2018)

FlightRadar24 website. https://www.flightradar24.com/

Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167 (2015)

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)

Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

Chollet, F., et al.: Keras (2015). https://keras.io

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem