dc.contributor.author |
Soto, I.
|
es_ES |
dc.contributor.author |
Campa, R.
|
es_ES |
dc.contributor.author |
Sánchez-Mazuca, S.
|
es_ES |
dc.date.accessioned |
2021-02-03T07:55:30Z |
|
dc.date.available |
2021-02-03T07:55:30Z |
|
dc.date.issued |
2020-12-23 |
|
dc.identifier.issn |
1697-7912 |
|
dc.identifier.uri |
http://hdl.handle.net/10251/160617 |
|
dc.description.abstract |
[EN] The pendubot is a two degree of freedom mechanical underactuated system that is used as an educational and research platform in the areas of robotics and control. It is considered as an underactuated system because it has only one control input. Although several control laws have been applied to stabilize the pendubot, most of them neglect the effects of friction. In this article, the analysis is different, since it is considered a pendubot system in which the actuated joint has a significant amount of friction that cannot be neglected. First, we review some of the existing friction models in the literature, including one that was recently proposed by the authors. Then we describe the implementation of some stabilization controllers that compensate for the effects of friction. Finally, an exhaustive comparison of the presented friction compensators is made to improve the performance of a real pendubot system. |
es_ES |
dc.description.abstract |
[ES] El pendubot es un sistema mecánico subactuado de dos grados de libertad que comúnmente se utiliza como plataforma educacional y de investigación en las áreas de robótica y control. Se le considera como un sistema subactuado debido a que sólo cuenta con una entrada de control. Aunque se han aplicado distintas leyes de control para estabilizar el pendubot, la mayoría de ellas desprecian los efectos de fricción. En este artículo el análisis es diferente, ya que se considera un sistema pendubot en el que la articulación actuada tiene una cantidad de fricción significativa, que no se puede despreciar. En primer lugar, se revisan algunos modelos de fricción existentes en la literatura, incluyendo uno que fue propuesto por los autores recientemente. Después, se describe la implementación de algunos controladores de estabilización que compensan los efectos de la fricción. Por ultimo, se hace una comparación exhaustiva de los compensadores de fricción presentados para mejorar el desempeno de un sistema pendubot real. |
es_ES |
dc.description.sponsorship |
Este trabajo fue apoyado parcialmente por el Tecnológico Nacional de México y la Universidad Autónoma de Ciudad Juárez. |
es_ES |
dc.language |
Español |
es_ES |
dc.publisher |
Universitat Politècnica de València |
es_ES |
dc.relation.ispartof |
Revista Iberoamericana de Automática e Informática industrial |
es_ES |
dc.rights |
Reconocimiento - No comercial - Compartir igual (by-nc-sa) |
es_ES |
dc.subject |
Modelado |
es_ES |
dc.subject |
Control |
es_ES |
dc.subject |
Fricción |
es_ES |
dc.subject |
Compensación |
es_ES |
dc.subject |
Sistemas mecánicos |
es_ES |
dc.subject |
Modelling |
es_ES |
dc.subject |
Friction |
es_ES |
dc.subject |
Compensation |
es_ES |
dc.subject |
Mechanical systems |
es_ES |
dc.title |
Modelado y control con compensación de fricción de un sistema pendubot |
es_ES |
dc.title.alternative |
Modeling and control with friction compensation of a pendubot system |
es_ES |
dc.type |
Artículo |
es_ES |
dc.identifier.doi |
10.4995/riai.2020.13083 |
|
dc.rights.accessRights |
Abierto |
es_ES |
dc.description.bibliographicCitation |
Soto, I.; Campa, R.; Sánchez-Mazuca, S. (2020). Modelado y control con compensación de fricción de un sistema pendubot. Revista Iberoamericana de Automática e Informática industrial. 18(1):39-47. https://doi.org/10.4995/riai.2020.13083 |
es_ES |
dc.description.accrualMethod |
OJS |
es_ES |
dc.relation.publisherversion |
https://doi.org/10.4995/riai.2020.13083 |
es_ES |
dc.description.upvformatpinicio |
39 |
es_ES |
dc.description.upvformatpfin |
47 |
es_ES |
dc.type.version |
info:eu-repo/semantics/publishedVersion |
es_ES |
dc.description.volume |
18 |
es_ES |
dc.description.issue |
1 |
es_ES |
dc.identifier.eissn |
1697-7920 |
|
dc.relation.pasarela |
OJS\13083 |
es_ES |
dc.description.references |
Armstrong-Helouvry, B., 1991. Control of Machines with Friction. Kluwer Academic Publishers. https://doi.org/10.1007/978-1-4615-3972-8 |
es_ES |
dc.description.references |
Canudas de Wit, C., Olson, H., Astrom, K., Lischinsky, P., 1995. A new model for control of system with friction. IEEE Transactions on Automatic Control 40, 419-425. https://doi.org/10.1109/9.376053 |
es_ES |
dc.description.references |
Courtney-Pratt, J., Eisner, E., 1957. The effect of a tangential force on the contact of metallic bodies. Proceedings of the Royal Society A 238, 529-550. https://doi.org/10.1098/rspa.1957.0016 |
es_ES |
dc.description.references |
Dahl, P., 1968. A solid friction model. Technical report TOR-0158(3107-18)-1, The Aerospace Corporation. https://doi.org/10.21236/ADA041920 |
es_ES |
dc.description.references |
Fantoni, I., Lozano, R., Spong, M. W., 2000. Energy based control of the pendubot. IEEE Transactions on Automatic Control 45, 79-86. https://doi.org/10.1109/9.847110 |
es_ES |
dc.description.references |
Guemghar, K., 2005. On the use of input-output feedback linearization techniques for the control of nonminimum-phase systems. Ph.D. thesis, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland. |
es_ES |
dc.description.references |
Johannes, V. I., Green, M. A., Brockley, C. A., 1973. The role of the rate of application of the tangential force in determining the static friction coefficient. Wear 24, 381-385. https://doi.org/10.1016/0043-1648(73)90166-X |
es_ES |
dc.description.references |
Ma, X. Q., Su, C. Y., 2002. A new fuzzy approach for swing up control of pendubot. In: Proceedings of the American Control Conference. Anchorage, AK, USA. |
es_ES |
dc.description.references |
Morin, A., 1833. New friction experiments carried out at Metz in 1831-1833. Proceedings of the French Royal Academy of Sciences 4, 1-128. |
es_ES |
dc.description.references |
O'Flaherty, R. W., Sanfelice, R. G., Teel, A. R., 2008. Hybrid control strategy for robust global swing-up of the pendubot. In: Proceedings of the American Control Conference. Seattle, WA, USA. https://doi.org/10.1109/ACC.2008.4586692 |
es_ES |
dc.description.references |
Rabinowics, E., 1956. Stick and slip. Scientific American 194, 109-118. https://doi.org/10.1038/scientificamerican0256-109 |
es_ES |
dc.description.references |
Sanchez-Mazuca, S., Campa, R., 2013. An improvement proposal to the static friction model. Mathematical Problems in Engineering 2013. https://doi.org/10.1155/2013/946526 |
es_ES |
dc.description.references |
Sanchez-Mazuca, S., Soto, I., Campa, R., 2015. Modeling and control of a pendubot with static friction. In: Cecarelli, M., Hernandez Martínez, E. E. (Eds.), Multibody Mechatronic Systems: Proceedings of the MUSME Conference held in Huatulco, Mexico, October 21-24, 2014. Springer, pp. 229- 240. https://doi.org/10.1007/978-3-319-09858-6_22 |
es_ES |
dc.description.references |
Spong, M. W., Block, D. J., 1995. The pendubot: a mechatronic system for control research and education. In: Proceedings of the IEEE Conference on Decision and Control. New Orleans, LA, USA. |
es_ES |
dc.description.references |
Stribeck, R., 1902. The key qualities of sliding and rolling bearings. (in German) Zeitschrift Des Vereins Deutscher Ingenieure 46, 1342-1348. |
es_ES |
dc.description.references |
Wang, W., Yi, J., Zhao, D., Liu, X., 2004. Adaptive sliding mode controller for an underactuated manipulator. In: Proceedings of the International Conference on Machine Learning and Cybernetics. Shangai, China. |
es_ES |
dc.description.references |
Xin, X., Kaneda, M., Oki, T., 2002. The swing-up control for the pendubot based on energy control approach. In: Proceeding of the IFAC World Congress. Barcelona, Spain. https://doi.org/10.3182/20020721-6-ES-1901.00889 |
es_ES |
dc.description.references |
Zhang, M. J., Tarn, T. J., 2002. Hybrid control of the pendubot. IEEE Transactions on Mechatronics 7, 79-86. https://doi.org/10.1109/3516.990890 |
es_ES |