- -

Some results about randomized binary Markov chains: Theory, computing and applications

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Some results about randomized binary Markov chains: Theory, computing and applications

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Cortés, J.-C. es_ES
dc.contributor.author Navarro-Quiles, A. es_ES
dc.contributor.author Romero, José-Vicente es_ES
dc.contributor.author Roselló, María-Dolores es_ES
dc.date.accessioned 2021-02-06T04:33:07Z
dc.date.available 2021-02-06T04:33:07Z
dc.date.issued 2020-02-01 es_ES
dc.identifier.issn 0020-7160 es_ES
dc.identifier.uri http://hdl.handle.net/10251/160812
dc.description.abstract [EN] This paper is addressed to give a generalization of the classical Markov methodology allowing the treatment of the entries of the transition matrix and initial condition as random variables instead of deterministic values lying in the interval [0,1]. This permits the computation of the first probability density function (1-PDF) of the solution stochastic process taking advantage of the so-called Random Variable Transformation technique. From the 1-PDF relevant probabilistic information about the evolution of Markov models can be calculated including all one-dimensional statistical moments. We are also interested in determining the computation of distribution of some important quantities related to randomized Markov chains (steady state, hitting times, etc.). All theoretical results are established under general assumptions and they are illustrated by modelling the spread of a technology using real data. es_ES
dc.description.sponsorship This work has been partially supported by the Ministerio de Economía y Competitividad [grant MTM2017-89664-P]. Ana Navarro Quiles acknowledges the doctorate scholarship granted by Programa de Ayudas de Investigación y Desarrollo (PAID), Universitat Politècnica de València es_ES
dc.language Inglés es_ES
dc.publisher Taylor & Francis es_ES
dc.relation.ispartof International Journal of Computer Mathematics es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Randomized binary Markov chain es_ES
dc.subject Random variable transformation technique es_ES
dc.subject First probability density function es_ES
dc.subject Statistical moments es_ES
dc.subject Mathematical modelling es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Some results about randomized binary Markov chains: Theory, computing and applications es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1080/00207160.2018.1440290 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MTM2017-89664-P/ES/PROBLEMAS DINAMICOS CON INCERTIDUMBRE SIMULABLE: MODELIZACION MATEMATICA, ANALISIS, COMPUTACION Y APLICACIONES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Cortés, J.; Navarro-Quiles, A.; Romero, J.; Roselló, M. (2020). Some results about randomized binary Markov chains: Theory, computing and applications. International Journal of Computer Mathematics. 97(1-2):141-156. https://doi.org/10.1080/00207160.2018.1440290 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1080/00207160.2018.1440290 es_ES
dc.description.upvformatpinicio 141 es_ES
dc.description.upvformatpfin 156 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 97 es_ES
dc.description.issue 1-2 es_ES
dc.relation.pasarela S\352319 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.description.references Behrends, E. (2000). Introduction to Markov Chains. Advanced Lectures in Mathematics. doi:10.1007/978-3-322-90157-6 es_ES
dc.description.references Casabán, M.-C., Cortés, J.-C., Romero, J.-V., & Roselló, M.-D. (2014). Determining the First Probability Density Function of Linear Random Initial Value Problems by the Random Variable Transformation (RVT) Technique: A Comprehensive Study. Abstract and Applied Analysis, 2014, 1-25. doi:10.1155/2014/248512 es_ES
dc.description.references Chen-Charpentier, B. M., & Stanescu, D. (2011). Biofilm growth on medical implants with randomness. Mathematical and Computer Modelling, 54(7-8), 1682-1686. doi:10.1016/j.mcm.2010.11.075 es_ES
dc.description.references Chen-Charpentier, B., & Stanescu, D. (2013). Parameter estimation using polynomial chaos and maximum likelihood. International Journal of Computer Mathematics, 91(2), 336-346. doi:10.1080/00207160.2013.809069 es_ES
dc.description.references Cortés, J.-C., Navarro-Quiles, A., Romero, J.-V., & Roselló, M.-D. (2017). Full solution of random autonomous first-order linear systems of difference equations. Application to construct random phase portrait for planar systems. Applied Mathematics Letters, 68, 150-156. doi:10.1016/j.aml.2016.12.015 es_ES
dc.description.references Cortés, J.-C., Navarro-Quiles, A., Romero, J.-V., & Roselló, M.-D. (2017). Randomizing the parameters of a Markov chain to model the stroke disease: A technical generalization of established computational methodologies towards improving real applications. Journal of Computational and Applied Mathematics, 324, 225-240. doi:10.1016/j.cam.2017.04.040 es_ES
dc.description.references Dorini, F. A., Cecconello, M. S., & Dorini, L. B. (2016). On the logistic equation subject to uncertainties in the environmental carrying capacity and initial population density. Communications in Nonlinear Science and Numerical Simulation, 33, 160-173. doi:10.1016/j.cnsns.2015.09.009 es_ES
dc.description.references Hussein, A., & Selim, M. M. (2012). Solution of the stochastic radiative transfer equation with Rayleigh scattering using RVT technique. Applied Mathematics and Computation, 218(13), 7193-7203. doi:10.1016/j.amc.2011.12.088 es_ES
dc.description.references Kindermann, S., & Papáček, Š. (2015). On Data Space Selection and Data Processing for Parameter Identification in a Reaction-Diffusion Model Based on FRAP Experiments. Abstract and Applied Analysis, 2015, 1-17. doi:10.1155/2015/859849 es_ES
dc.description.references Mar, J., Antoñanzas, F., Pradas, R., & Arrospide, A. (2010). Los modelos de Markov probabilísticos en la evaluación económica de tecnologías sanitarias: una guía práctica. Gaceta Sanitaria, 24(3), 209-214. doi:10.1016/j.gaceta.2010.02.006 es_ES
dc.description.references Santos, L. T., Dorini, F. A., & Cunha, M. C. C. (2010). The probability density function to the random linear transport equation. Applied Mathematics and Computation, 216(5), 1524-1530. doi:10.1016/j.amc.2010.03.001 es_ES
dc.description.references Sericola, B. (2013). Markov Chains. doi:10.1002/9781118731543 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem