Mostrar el registro sencillo del ítem
dc.contributor.author | Cortés, J.-C. | es_ES |
dc.contributor.author | Navarro-Quiles, A. | es_ES |
dc.contributor.author | Romero, José-Vicente | es_ES |
dc.contributor.author | Roselló, María-Dolores | es_ES |
dc.date.accessioned | 2021-02-06T04:33:07Z | |
dc.date.available | 2021-02-06T04:33:07Z | |
dc.date.issued | 2020-02-01 | es_ES |
dc.identifier.issn | 0020-7160 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/160812 | |
dc.description.abstract | [EN] This paper is addressed to give a generalization of the classical Markov methodology allowing the treatment of the entries of the transition matrix and initial condition as random variables instead of deterministic values lying in the interval [0,1]. This permits the computation of the first probability density function (1-PDF) of the solution stochastic process taking advantage of the so-called Random Variable Transformation technique. From the 1-PDF relevant probabilistic information about the evolution of Markov models can be calculated including all one-dimensional statistical moments. We are also interested in determining the computation of distribution of some important quantities related to randomized Markov chains (steady state, hitting times, etc.). All theoretical results are established under general assumptions and they are illustrated by modelling the spread of a technology using real data. | es_ES |
dc.description.sponsorship | This work has been partially supported by the Ministerio de Economía y Competitividad [grant MTM2017-89664-P]. Ana Navarro Quiles acknowledges the doctorate scholarship granted by Programa de Ayudas de Investigación y Desarrollo (PAID), Universitat Politècnica de València | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Taylor & Francis | es_ES |
dc.relation.ispartof | International Journal of Computer Mathematics | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Randomized binary Markov chain | es_ES |
dc.subject | Random variable transformation technique | es_ES |
dc.subject | First probability density function | es_ES |
dc.subject | Statistical moments | es_ES |
dc.subject | Mathematical modelling | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Some results about randomized binary Markov chains: Theory, computing and applications | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1080/00207160.2018.1440290 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MTM2017-89664-P/ES/PROBLEMAS DINAMICOS CON INCERTIDUMBRE SIMULABLE: MODELIZACION MATEMATICA, ANALISIS, COMPUTACION Y APLICACIONES/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Cortés, J.; Navarro-Quiles, A.; Romero, J.; Roselló, M. (2020). Some results about randomized binary Markov chains: Theory, computing and applications. International Journal of Computer Mathematics. 97(1-2):141-156. https://doi.org/10.1080/00207160.2018.1440290 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1080/00207160.2018.1440290 | es_ES |
dc.description.upvformatpinicio | 141 | es_ES |
dc.description.upvformatpfin | 156 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 97 | es_ES |
dc.description.issue | 1-2 | es_ES |
dc.relation.pasarela | S\352319 | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.description.references | Behrends, E. (2000). Introduction to Markov Chains. Advanced Lectures in Mathematics. doi:10.1007/978-3-322-90157-6 | es_ES |
dc.description.references | Casabán, M.-C., Cortés, J.-C., Romero, J.-V., & Roselló, M.-D. (2014). Determining the First Probability Density Function of Linear Random Initial Value Problems by the Random Variable Transformation (RVT) Technique: A Comprehensive Study. Abstract and Applied Analysis, 2014, 1-25. doi:10.1155/2014/248512 | es_ES |
dc.description.references | Chen-Charpentier, B. M., & Stanescu, D. (2011). Biofilm growth on medical implants with randomness. Mathematical and Computer Modelling, 54(7-8), 1682-1686. doi:10.1016/j.mcm.2010.11.075 | es_ES |
dc.description.references | Chen-Charpentier, B., & Stanescu, D. (2013). Parameter estimation using polynomial chaos and maximum likelihood. International Journal of Computer Mathematics, 91(2), 336-346. doi:10.1080/00207160.2013.809069 | es_ES |
dc.description.references | Cortés, J.-C., Navarro-Quiles, A., Romero, J.-V., & Roselló, M.-D. (2017). Full solution of random autonomous first-order linear systems of difference equations. Application to construct random phase portrait for planar systems. Applied Mathematics Letters, 68, 150-156. doi:10.1016/j.aml.2016.12.015 | es_ES |
dc.description.references | Cortés, J.-C., Navarro-Quiles, A., Romero, J.-V., & Roselló, M.-D. (2017). Randomizing the parameters of a Markov chain to model the stroke disease: A technical generalization of established computational methodologies towards improving real applications. Journal of Computational and Applied Mathematics, 324, 225-240. doi:10.1016/j.cam.2017.04.040 | es_ES |
dc.description.references | Dorini, F. A., Cecconello, M. S., & Dorini, L. B. (2016). On the logistic equation subject to uncertainties in the environmental carrying capacity and initial population density. Communications in Nonlinear Science and Numerical Simulation, 33, 160-173. doi:10.1016/j.cnsns.2015.09.009 | es_ES |
dc.description.references | Hussein, A., & Selim, M. M. (2012). Solution of the stochastic radiative transfer equation with Rayleigh scattering using RVT technique. Applied Mathematics and Computation, 218(13), 7193-7203. doi:10.1016/j.amc.2011.12.088 | es_ES |
dc.description.references | Kindermann, S., & Papáček, Š. (2015). On Data Space Selection and Data Processing for Parameter Identification in a Reaction-Diffusion Model Based on FRAP Experiments. Abstract and Applied Analysis, 2015, 1-17. doi:10.1155/2015/859849 | es_ES |
dc.description.references | Mar, J., Antoñanzas, F., Pradas, R., & Arrospide, A. (2010). Los modelos de Markov probabilísticos en la evaluación económica de tecnologías sanitarias: una guía práctica. Gaceta Sanitaria, 24(3), 209-214. doi:10.1016/j.gaceta.2010.02.006 | es_ES |
dc.description.references | Santos, L. T., Dorini, F. A., & Cunha, M. C. C. (2010). The probability density function to the random linear transport equation. Applied Mathematics and Computation, 216(5), 1524-1530. doi:10.1016/j.amc.2010.03.001 | es_ES |
dc.description.references | Sericola, B. (2013). Markov Chains. doi:10.1002/9781118731543 | es_ES |