- -

Nonlocal electrodinamics of homogenized metal-dielectric photonic crystals

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Nonlocal electrodinamics of homogenized metal-dielectric photonic crystals

Mostrar el registro completo del ítem

Konovalenko, A.; Reyes-Avendaño, JA.; Méndez-Blas, A.; Cervera Moreno, FS.; Myslivets, E.; Radic, S.; Sánchez-Dehesa Moreno-Cid, J.... (2019). Nonlocal electrodinamics of homogenized metal-dielectric photonic crystals. Journal of Optics. 21(8):1-16. https://doi.org/10.1088/2040-8986/ab2a4e

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/160834

Ficheros en el ítem

Metadatos del ítem

Título: Nonlocal electrodinamics of homogenized metal-dielectric photonic crystals
Autor: Konovalenko, Anatolii Reyes-Avendaño, Jorge A. Méndez-Blas, Antonio Cervera Moreno, Francisco Salvador Myslivets, Evgeny Radic, Stojan Sánchez-Dehesa Moreno-Cid, José Pérez-Rodríguez, Felipe
Entidad UPV: Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada
Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica
Fecha difusión:
Resumen:
[EN] The nonlocal effective permittivity tensor for photonic crystals (PCs), having dielectric and metallic inclusions in the unit cell, is calculated and analyzed within the homogenization theory based on the Fourier ...[+]
Palabras clave: Metamaterials , Homogenization , Effective parameters , Bianisotropy , Negative refractive index , Photonic crystals
Derechos de uso: Cerrado
Fuente:
Journal of Optics. (issn: 2040-8978 )
DOI: 10.1088/2040-8986/ab2a4e
Editorial:
IOP Publishing
Versión del editor: https://doi.org/10.1088/2040-8986/ab2a4e
Código del Proyecto:
info:eu-repo/grantAgreement/CONACyT//CB-2011-01-166382/
info:eu-repo/grantAgreement/MINECO//TEC2014-53088-C3-1-R/ES/DISPOSITIVOS PASIVOS BASADOS EN MATERIALES FUNCIONALES AVANZADOS CON RESONADORES DE ALTAS PRESTACIONES/
Agradecimientos:
This work was partially supported by Red-PRODEP, PRO-FOCIE, CONACYT (Grant No. CB-2011-01-166382), and VIEP-BUAP. Experimental measurements were carried out with support of Wave Phenomena Group of Universitat Politecnica ...[+]
Tipo: Artículo

References

Smith, D. R., & Pendry, J. B. (2006). Homogenization of metamaterials by field averaging (invited paper). Journal of the Optical Society of America B, 23(3), 391. doi:10.1364/josab.23.000391

Silveirinha, M. G. (2006). Nonlocal homogenization model for a periodic array ofϵ-negative rods. Physical Review E, 73(4). doi:10.1103/physreve.73.046612

Halevi, P., Krokhin, A. A., & Arriaga, J. (1999). Photonic Crystal Optics and Homogenization of 2D Periodic Composites. Physical Review Letters, 82(4), 719-722. doi:10.1103/physrevlett.82.719 [+]
Smith, D. R., & Pendry, J. B. (2006). Homogenization of metamaterials by field averaging (invited paper). Journal of the Optical Society of America B, 23(3), 391. doi:10.1364/josab.23.000391

Silveirinha, M. G. (2006). Nonlocal homogenization model for a periodic array ofϵ-negative rods. Physical Review E, 73(4). doi:10.1103/physreve.73.046612

Halevi, P., Krokhin, A. A., & Arriaga, J. (1999). Photonic Crystal Optics and Homogenization of 2D Periodic Composites. Physical Review Letters, 82(4), 719-722. doi:10.1103/physrevlett.82.719

Ciattoni, A., & Rizza, C. (2015). Nonlocal homogenization theory in metamaterials: Effective electromagnetic spatial dispersion and artificial chirality. Physical Review B, 91(18). doi:10.1103/physrevb.91.184207

Krokhin, A. A., Arriaga, J., Gumen, L. N., & Drachev, V. P. (2016). High-frequency homogenization for layered hyperbolic metamaterials. Physical Review B, 93(7). doi:10.1103/physrevb.93.075418

Gorlach, M. A., Voytova, T. A., Lapine, M., Kivshar, Y. S., & Belov, P. A. (2016). Nonlocal homogenization for nonlinear metamaterials. Physical Review B, 93(16). doi:10.1103/physrevb.93.165125

Cerdán-Ramírez, V., Zenteno-Mateo, B., Sampedro, M. P., Palomino-Ovando, M. A., Flores-Desirena, B., & Pérez-Rodríguez, F. (2009). Anisotropy effects in homogenized magnetodielectric photonic crystals. Journal of Applied Physics, 106(10), 103520. doi:10.1063/1.3261758

Konovalenko, A., & Pérez-Rodríguez, F. (2017). Nonlocal response of tunable photonic metamaterials with semiconductor inclusions. Journal of the Optical Society of America B, 34(9), 2031. doi:10.1364/josab.34.002031

Lawrence, F. J., de Sterke, C. M., Botten, L. C., McPhedran, R. C., & Dossou, K. B. (2013). Modeling photonic crystal interfaces and stacks: impedance-based approaches. Advances in Optics and Photonics, 5(4), 385. doi:10.1364/aop.5.000385

Dossou, K. B., Botten, L. C., & Poulton, C. G. (2013). Semi-analytic impedance modeling of three-dimensional photonic and metamaterial structures. Journal of the Optical Society of America A, 30(10), 2034. doi:10.1364/josaa.30.002034

Shelby, R. A., Smith, D. R., & Schultz, S. (2001). Experimental Verification of a Negative Index of Refraction. Science, 292(5514), 77-79. doi:10.1126/science.1058847

Agranovich, V. M., & Ginzburg, V. (1984). Crystal Optics with Spatial Dispersion, and Excitons. Springer Series in Solid-State Sciences. doi:10.1007/978-3-662-02406-5

Reyes, J. A., Reyes-Avendaño, J. A., & Halevi, P. (2008). Electrical tuning of photonic crystals infilled with liquid crystals. Optics Communications, 281(9), 2535-2547. doi:10.1016/j.optcom.2007.12.073

Mochan, W. L., Ortiz, G. P., & Mendoza, B. S. (2010). Efficient homogenization procedure for the calculation of optical properties of 3D nanostructured composites. Optics Express, 18(21), 22119. doi:10.1364/oe.18.022119

Paredes-Juárez, A., Iakushev, D. A., Flores-Desirena, B., Makarov, N. M., & Pérez-Rodríguez, F. (2014). Nonlocal effect on optic spectrum of a periodic dielectric-metal stack. Optics Express, 22(7), 7581. doi:10.1364/oe.22.007581

Liu, Y., Guenneau, S., & Gralak, B. (2013). Causality and passivity properties of effective parameters of electromagnetic multilayered structures. Physical Review B, 88(16). doi:10.1103/physrevb.88.165104

Papadakis, G. T., Fleischman, D., Davoyan, A., Yeh, P., & Atwater, H. A. (2018). Optical magnetism in planar metamaterial heterostructures. Nature Communications, 9(1). doi:10.1038/s41467-017-02589-8

Pendry, J. B., Holden, A. J., Stewart, W. J., & Youngs, I. (1996). Extremely Low Frequency Plasmons in Metallic Mesostructures. Physical Review Letters, 76(25), 4773-4776. doi:10.1103/physrevlett.76.4773

Pendry, J. B., Holden, A. J., Robbins, D. J., & Stewart, W. J. (1998). Low frequency plasmons in thin-wire structures. Journal of Physics: Condensed Matter, 10(22), 4785-4809. doi:10.1088/0953-8984/10/22/007

Marqués, R., Medina, F., & Rafii-El-Idrissi, R. (2002). Role of bianisotropy in negative permeability and left-handed metamaterials. Physical Review B, 65(14). doi:10.1103/physrevb.65.144440

Konovalenko, A., Gutiérrez-Reyes, E., González, A. L., Flores-Méndez, J., & Pérez-Rodríguez, F. (2017). Nonlocal metasolid response of homogenized phononic crystals. Journal of Applied Physics, 121(15), 155102. doi:10.1063/1.4981129

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem