dc.contributor.author |
Li, Yongli
|
es_ES |
dc.contributor.author |
Li, Sihan
|
es_ES |
dc.contributor.author |
Wei, Chuang
|
es_ES |
dc.contributor.author |
Liu, Jiaming
|
es_ES |
dc.date.accessioned |
2021-02-06T04:33:49Z |
|
dc.date.available |
2021-02-06T04:33:49Z |
|
dc.date.issued |
2020 |
es_ES |
dc.identifier.issn |
0959-3845 |
es_ES |
dc.identifier.uri |
http://hdl.handle.net/10251/160836 |
|
dc.description.abstract |
[EN] Purpose Due to the unintentional or even the intentional mistakes arising from a survey, the purpose of this paper is to present a data-driven method for detecting students' friendship network based on their daily behaviour data. Based on the detected friendship network, this paper further aims to explore how the considered network effects (i.e. friend numbers (FNs), structural holes (SHs) and friendship homophily) influence students' GPA ranking.
Design/methodology/approach The authors collected the campus smart card data of 8,917 sophomores registered in one Chinese university during one academic year, uncovered the inner relationship between the daily behaviour data with the friendship to infer the friendship network among students, and further adopted the ordered probit regression model to test the relationship between network effects with GPA rankings by controlling several influencing variables.
Findings The data-driven approach of detecting friendship network is demonstrated to be useful and the empirical analysis illustrates that the relationship between GPA ranking and FN presents an inverted "U-shape", richness in SHs positively affects GPA ranking, and making more friends within the same department will benefit promoting GPA ranking.
Originality/value The proposed approach can be regarded as a new information technology for detecting friendship network from the real behaviour data, which is potential to be widely used in many scopes. Moreover, the findings from the designed empirical analysis also shed light on how to improve GPA rankings from the angle of network effect and further guide how many friends should be made in order to achieve the highest GPA level, which contributes to the existing literature. |
es_ES |
dc.description.sponsorship |
This research was supported by the research grants from the National Natural Science Foundation of China (71771041 and 71501032). |
es_ES |
dc.language |
Inglés |
es_ES |
dc.publisher |
Emerald |
es_ES |
dc.relation.ispartof |
Information Technology & People |
es_ES |
dc.rights |
Reserva de todos los derechos |
es_ES |
dc.subject |
Network analysis |
es_ES |
dc.subject |
Education |
es_ES |
dc.subject |
Social networking |
es_ES |
dc.subject |
Knowledge discovery |
es_ES |
dc.subject |
Information processing theory |
es_ES |
dc.title |
How students' friendship network affects their GPA ranking: A data-driven approach linking friendship with daily behaviour |
es_ES |
dc.type |
Artículo |
es_ES |
dc.identifier.doi |
10.1108/ITP-03-2018-0148 |
es_ES |
dc.relation.projectID |
info:eu-repo/grantAgreement/NSFC//71771041/ |
es_ES |
dc.relation.projectID |
info:eu-repo/grantAgreement/NSFC//71501032/ |
es_ES |
dc.rights.accessRights |
Cerrado |
es_ES |
dc.contributor.affiliation |
Universitat Politècnica de València. Instituto de Gestión de la Innovación y del Conocimiento - Institut de Gestió de la Innovació i del Coneixement |
es_ES |
dc.description.bibliographicCitation |
Li, Y.; Li, S.; Wei, C.; Liu, J. (2020). How students' friendship network affects their GPA ranking: A data-driven approach linking friendship with daily behaviour. Information Technology & People. 33(2):535-553. https://doi.org/10.1108/ITP-03-2018-0148 |
es_ES |
dc.description.accrualMethod |
S |
es_ES |
dc.relation.publisherversion |
https://doi.org/10.1108/ITP-03-2018-0148 |
es_ES |
dc.description.upvformatpinicio |
535 |
es_ES |
dc.description.upvformatpfin |
553 |
es_ES |
dc.type.version |
info:eu-repo/semantics/publishedVersion |
es_ES |
dc.description.volume |
33 |
es_ES |
dc.description.issue |
2 |
es_ES |
dc.relation.pasarela |
S\412758 |
es_ES |
dc.contributor.funder |
National Natural Science Foundation of China |
es_ES |
dc.description.references |
Aral, S., & Walker, D. (2012). Identifying Influential and Susceptible Members of Social Networks. Science, 337(6092), 337-341. doi:10.1126/science.1215842 |
es_ES |
dc.description.references |
Becker, W. E., & Kennedy, P. E. (1992). A Graphical Exposition of the Ordered Probit. Econometric Theory, 8(01), 127-131. doi:10.1017/s0266466600010781 |
es_ES |
dc.description.references |
Bramoullé, Y., Djebbari, H., & Fortin, B. (2009). Identification of peer effects through social networks. Journal of Econometrics, 150(1), 41-55. doi:10.1016/j.jeconom.2008.12.021 |
es_ES |
dc.description.references |
Burt, R. S. (2004). Structural Holes and Good Ideas. American Journal of Sociology, 110(2), 349-399. doi:10.1086/421787 |
es_ES |
dc.description.references |
Credé, M., Tynan, M. C., & Harms, P. D. (2017). Much ado about grit: A meta-analytic synthesis of the grit literature. Journal of Personality and Social Psychology, 113(3), 492-511. doi:10.1037/pspp0000102 |
es_ES |
dc.description.references |
An Economic Model of Friendship: Homophily, Minorities, and Segregation. (2009). Econometrica, 77(4), 1003-1045. doi:10.3982/ecta7528 |
es_ES |
dc.description.references |
Currarini, S., Jackson, M. O., & Pin, P. (2010). Identifying the roles of race-based choice and chance in high school friendship network formation. Proceedings of the National Academy of Sciences, 107(11), 4857-4861. doi:10.1073/pnas.0911793107 |
es_ES |
dc.description.references |
Duckworth, A. L., & Seligman, M. E. P. (2005). Self-Discipline Outdoes IQ in Predicting Academic Performance of Adolescents. Psychological Science, 16(12), 939-944. doi:10.1111/j.1467-9280.2005.01641.x |
es_ES |
dc.description.references |
Eagle, N., Pentland, A., & Lazer, D. (2009). Inferring friendship network structure by using mobile phone data. Proceedings of the National Academy of Sciences, 106(36), 15274-15278. doi:10.1073/pnas.0900282106 |
es_ES |
dc.description.references |
Epple, D. and Romano, R.E. (2011), “Peer effects in education: a survey of the theory and evidence”, in Benhabib, J., Bisin, A. and Jackson, M. (Eds), Handbook of Social Economics, Vol. 1, North-Holland, pp. 1053-1163. |
es_ES |
dc.description.references |
Farmer, T., Xie, H., Cairns, B. and Hutchins, B. (2007), “Social synchrony, peer networks, and aggression in school”, in Hawley, P., Little, T. and Rodkin, P. (Eds), Aggression and Adaptation: The Bright Side to Bad Behavior, Erlbaum, Mahwah, NJ, pp. 209-234. |
es_ES |
dc.description.references |
Fricker, R. D., & Schonlau, M. (2002). Advantages and Disadvantages of Internet Research Surveys: Evidence from the Literature. Field Methods, 14(4), 347-367. doi:10.1177/152582202237725 |
es_ES |
dc.description.references |
Hausman, J. A. (1978). Specification Tests in Econometrics. Econometrica, 46(6), 1251. doi:10.2307/1913827 |
es_ES |
dc.description.references |
Jain, T., & Kapoor, M. (2015). The Impact of Study Groups and Roommates on Academic Performance. Review of Economics and Statistics, 97(1), 44-54. doi:10.1162/rest_a_00454 |
es_ES |
dc.description.references |
Jurbergs, N., Palcic, J., & Kelley, M. L. (2007). School-home notes with and without response cost: Increasing attention and academic performance in low-income children with attention-deficit/hyperactivity disorder. School Psychology Quarterly, 22(3), 358-379. doi:10.1037/1045-3830.22.3.358 |
es_ES |
dc.description.references |
Lee, J., Lee, H., & Park, J.-G. (2014). Exploring the impact of empowering leadership on knowledge sharing, absorptive capacity and team performance in IT service. Information Technology & People, 27(3), 366-386. doi:10.1108/itp-10-2012-0115 |
es_ES |
dc.description.references |
Li, Y., Zhang, D., Luo, P., & Jiang, J. (2017). Interpreting the formation of co-author networks via utility analysis. Information Processing & Management, 53(3), 624-639. doi:10.1016/j.ipm.2016.12.007 |
es_ES |
dc.description.references |
Lund, K., & Burgess, C. (1996). Producing high-dimensional semantic spaces from lexical co-occurrence. Behavior Research Methods, Instruments, & Computers, 28(2), 203-208. doi:10.3758/bf03204766 |
es_ES |
dc.description.references |
McCabe, J. (2016), “How your college friendships help you or don’t”, Dartmouth News, 16 December, available at: https://news.dartmouth.edu/news/2016/12/how-your-college-friendships-help-you-or-dont |
es_ES |
dc.description.references |
Murayama, K., & Elliot, A. J. (2012). The competition–performance relation: A meta-analytic review and test of the opposing processes model of competition and performance. Psychological Bulletin, 138(6), 1035-1070. doi:10.1037/a0028324 |
es_ES |
dc.description.references |
Paluck, E. L., & Green, D. P. (2009). Prejudice Reduction: What Works? A Review and Assessment of Research and Practice. Annual Review of Psychology, 60(1), 339-367. doi:10.1146/annurev.psych.60.110707.163607 |
es_ES |
dc.description.references |
Richardson, M., Abraham, C., & Bond, R. (2012). Psychological correlates of university students’ academic performance: A systematic review and meta-analysis. Psychological Bulletin, 138(2), 353-387. doi:10.1037/a0026838 |
es_ES |
dc.description.references |
Roseth, C. J., Johnson, D. W., & Johnson, R. T. (2008). Promoting early adolescents’ achievement and peer relationships: The effects of cooperative, competitive, and individualistic goal structures. Psychological Bulletin, 134(2), 223-246. doi:10.1037/0033-2909.134.2.223 |
es_ES |
dc.description.references |
Sivo, S., Saunders, C., Chang, Q., … Jiang, J. (2006). How Low Should You Go? Low Response Rates and the Validity of Inference in IS Questionnaire Research. Journal of the Association for Information Systems, 7(6), 351-414. doi:10.17705/1jais.00093 |
es_ES |
dc.description.references |
Smith, J. F., & Skrbiš, Z. (2017). A social inequality of motivation? The relationship between beliefs about academic success and young people’s educational attainment. British Educational Research Journal, 43(3), 441-465. doi:10.1002/berj.3272 |
es_ES |
dc.description.references |
Steinberg, L., & Morris, A. S. (2001). Adolescent Development. Annual Review of Psychology, 52(1), 83-110. doi:10.1146/annurev.psych.52.1.83 |
es_ES |
dc.description.references |
Stock, J. H., Wright, J. H., & Yogo, M. (2002). A Survey of Weak Instruments and Weak Identification in Generalized Method of Moments. Journal of Business & Economic Statistics, 20(4), 518-529. doi:10.1198/073500102288618658 |
es_ES |
dc.description.references |
Van der Aalst, W. M. P., Reijers, H. A., & Song, M. (2005). Discovering Social Networks from Event Logs. Computer Supported Cooperative Work (CSCW), 14(6), 549-593. doi:10.1007/s10606-005-9005-9 |
es_ES |
dc.description.references |
Vasudeva, G., Zaheer, A., & Hernandez, E. (2013). The Embeddedness of Networks: Institutions, Structural Holes, and Innovativeness in the Fuel Cell Industry. Organization Science, 24(3), 645-663. doi:10.1287/orsc.1120.0780 |
es_ES |
dc.description.references |
Vedel, A. (2014). The Big Five and tertiary academic performance: A systematic review and meta-analysis. Personality and Individual Differences, 71, 66-76. doi:10.1016/j.paid.2014.07.011 |
es_ES |
dc.description.references |
ZHOU, M., & KIM, S. (2006). Community Forces, Social Capital, and Educational Achievement: The Case of Supplementary Education in the Chinese and Korean Immigrant Communities. Harvard Educational Review, 76(1), 1-29. doi:10.17763/haer.76.1.u08t548554882477 |
es_ES |
dc.description.references |
Zimmerman, K. (2016), “Can having a best friend at work make you more productive?”, Forbes, 5 December, available at: www.forbes.com/sites/kaytiezimmerman/2016/12/05/can-having-a-best-friend-at-work-make-you-more-productive/#25f80bfc43bb |
es_ES |
dc.description.references |
Heckman, J. J. (1978). Dummy Endogenous Variables in a Simultaneous Equation System. Econometrica, 46(4), 931. doi:10.2307/1909757 |
es_ES |