Mostrar el registro sencillo del ítem
dc.contributor.author | Hortelano, Irene | es_ES |
dc.contributor.author | Moreno Trigos, Mª Yolanda | es_ES |
dc.contributor.author | Moreno-Mesonero, Laura | es_ES |
dc.contributor.author | Ferrús Pérez, Mª Antonia | es_ES |
dc.date.accessioned | 2021-02-11T04:31:58Z | |
dc.date.available | 2021-02-11T04:31:58Z | |
dc.date.issued | 2020-09 | es_ES |
dc.identifier.issn | 0269-7491 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/161039 | |
dc.description.abstract | [EN] Wastewater has become one of the most important and least expensive water for the agriculture sector. As an alternative to the overexploitation of water resources. Inappropriate treatment before reuse can result in a negative impact in environment, such us presence of pathogens. Causing an increased risk in health and environmental safety, which can lead to an increased risk of human infection. Among all the emerging wastewater pathogens, bacteria of the genus Helicobacter are some of the most disturbing ones, since they are directly related to gastric illness and hepatobiliary and gastric cancer. Therefore, the aim of this study was to determine the presence of potentially pathogenic Helicobacter spp in treated wastewater aimed for irrigation. The next generation sequencing approach based on Illumina in combination with culture and molecular techniques (q PCR, FISH and DVC-FISH) have been used to analyzed 16 wastewater samples. All the enriched samples were negative for Helicobacter growth in any of the culture media used. Characteristic colonies, covered by a mass of non-specific bacterial growth, were analyzed by Helicobacter spp. PCR, H. pylori qPCR and sequencing. One of the direct samples was positive for H. pylori. Using FISH and DVC-FISH technique, Helicobacter spp, including H. pylori, was detected in seven out of eight samples of wastewater from the tertiary effluents, all of them viable. Although, qPCR yield only three positive results. Moreover, when wastewater microbiome was studied, Helicobacter genus was detected in 7 samples. The different molecular techniques using in the present study, provided evidence, for the first time, the presence of species belonging to the genus Helicobacter such as H. pylori, H. hepaticus, H. pullorum and H. suis in wastewater samples, even after disinfection treatment. | es_ES |
dc.description.sponsorship | This research has been supported in part by grant ACIF/2016/150 for scientific research from the Ministry of Culture, Education and Sport of the Valencian Community, Spain and the European Social Fund 2014-2020. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Environmental Pollution | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Wastewater | es_ES |
dc.subject | Helicobacter spp | es_ES |
dc.subject | Molecular techniques | es_ES |
dc.subject | Metagenomics | es_ES |
dc.subject | Pathogens | es_ES |
dc.subject.classification | MICROBIOLOGIA | es_ES |
dc.title | Deep-Amplicon Sequencing (DAS) Analysis to Determine the Presence of Pathogenic Helicobacter species in Watewater Reused for Irrigation | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.envpol.2020.114768 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//ACIF%2F2016%2F150/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Ingeniería del Agua y del Medio Ambiente - Institut Universitari d'Enginyeria de l'Aigua i Medi Ambient | es_ES |
dc.description.bibliographicCitation | Hortelano, I.; Moreno Trigos, MY.; Moreno-Mesonero, L.; Ferrús Pérez, MA. (2020). Deep-Amplicon Sequencing (DAS) Analysis to Determine the Presence of Pathogenic Helicobacter species in Watewater Reused for Irrigation. Environmental Pollution. 264:1-10. https://doi.org/10.1016/j.envpol.2020.114768 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.envpol.2020.114768 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 10 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 264 | es_ES |
dc.identifier.pmid | 32434114 | es_ES |
dc.relation.pasarela | S\410539 | es_ES |
dc.contributor.funder | European Social Fund | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.description.references | Ahmed, A. M., Younis, E. E. A., Ishida, Y., & Shimamoto, T. (2009). Genetic basis of multidrug resistance in Salmonella enterica serovars Enteritidis and Typhimurium isolated from diarrheic calves in Egypt. Acta Tropica, 111(2), 144-149. doi:10.1016/j.actatropica.2009.04.004 | es_ES |
dc.description.references | Anand, P. S. (2014). Role of dental plaque, saliva and periodontal disease inHelicobacter pyloriinfection. World Journal of Gastroenterology, 20(19), 5639. doi:10.3748/wjg.v20.i19.5639 | es_ES |
dc.description.references | Azevedo, N. F., Almeida, C., Fernandes, I., Cerqueira, L., Dias, S., Keevil, C. W., & Vieira, M. J. (2008). Survival of Gastric and Enterohepatic Helicobacter spp. in Water: Implications for Transmission. Applied and Environmental Microbiology, 74(6), 1805-1811. doi:10.1128/aem.02241-07 | es_ES |
dc.description.references | Bai, X., Xi, C., & Wu, J. (2016). Survival of Helicobacter pylori in the wastewater treatment process and the receiving river in Michigan, USA. Journal of Water and Health, 14(4), 692-698. doi:10.2166/wh.2016.259 | es_ES |
dc.description.references | Bohr, U. R. M., Glasbrenner, B., Primus, A., Zagoura, A., Wex, T., & Malfertheiner, P. (2004). Identification of Enterohepatic Helicobacter Species in Patients Suffering from Inflammatory Bowel Disease. Journal of Clinical Microbiology, 42(6), 2766-2768. doi:10.1128/jcm.42.6.2766-2768.2004 | es_ES |
dc.description.references | Bokulich, N. A., Subramanian, S., Faith, J. J., Gevers, D., Gordon, J. I., Knight, R., … Caporaso, J. G. (2013). Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nature Methods, 10(1), 57-59. doi:10.1038/nmeth.2276 | es_ES |
dc.description.references | Botes, M., de Kwaadsteniet, M., & Cloete, T. E. (2012). Application of quantitative PCR for the detection of microorganisms in water. Analytical and Bioanalytical Chemistry, 405(1), 91-108. doi:10.1007/s00216-012-6399-3 | es_ES |
dc.description.references | Brooks, J. P., Edwards, D. J., Harwich, M. D., Rivera, M. C., Fettweis, J. M., … Buck, G. A. (2015). The truth about metagenomics: quantifying and counteracting bias in 16S rRNA studies. BMC Microbiology, 15(1). doi:10.1186/s12866-015-0351-6 | es_ES |
dc.description.references | Cai, L., & Zhang, T. (2013). Detecting Human Bacterial Pathogens in Wastewater Treatment Plants by a High-Throughput Shotgun Sequencing Technique. Environmental Science & Technology, 47(10), 5433-5441. doi:10.1021/es400275r | es_ES |
dc.description.references | Cao, Y., Fanning, S., Proos, S., Jordan, K., & Srikumar, S. (2017). A Review on the Applications of Next Generation Sequencing Technologies as Applied to Food-Related Microbiome Studies. Frontiers in Microbiology, 8. doi:10.3389/fmicb.2017.01829 | es_ES |
dc.description.references | Caporaso, J. G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F. D., Costello, E. K., … Knight, R. (2010). QIIME allows analysis of high-throughput community sequencing data. Nature Methods, 7(5), 335-336. doi:10.1038/nmeth.f.303 | es_ES |
dc.description.references | Casswall, T. H., Németh, A., Nilsson, I., Wadström, T., & Nilsson, H.-O. (2010). Helicobacterspecies DNA in liver and gastric tissues in children and adolescents with chronic liver disease. Scandinavian Journal of Gastroenterology, 45(2), 160-167. doi:10.3109/00365520903426915 | es_ES |
dc.description.references | Cellini, L., Grande, R., Di Campli, E., Di Bartolomeo, S., Di Giulio, M., Traini, T., & Trubiani, O. (2008). Characterization of anHelicobacter pylorienvironmental strain. Journal of Applied Microbiology, 105(3), 761-769. doi:10.1111/j.1365-2672.2008.03808.x | es_ES |
dc.description.references | Chan, V., Crocetti, G., Grehan, M., Zhang, L., Danon, S., Lee, A., & Mitchell, H. (2005). Visualization of Helicobacter Species Within the Murine Cecal Mucosa Using Specific Fluorescence In Situ Hybridization. Helicobacter, 10(2), 114-124. doi:10.1111/j.1523-5378.2005.00298.x | es_ES |
dc.description.references | Chen, D.-F. (2007). H pyloriare associated with chronic cholecystitis. World Journal of Gastroenterology, 13(7), 1119. doi:10.3748/wjg.v13.i7.1119 | es_ES |
dc.description.references | Corry, J. E. L., Atabay, H. I., Forsythe, S. J., & Mansfield, L. P. (2003). Chapter 18 Culture media for the isolation of campylobacters, helicobacters and arcobacters. Progress in Industrial Microbiology, 271-316. doi:10.1016/s0079-6352(03)80021-8 | es_ES |
dc.description.references | Cunachi, A. M., Fernández-Delgado, M., Suárez, P., Contreras, M., Michelangeli, F., & García-Amado, M. A. (2015). Detection of Helicobacter DNA in different water sources and penguin feces from Greenwich, Dee and Barrientos Islands, Antarctica. Polar Biology, 39(9), 1539-1546. doi:10.1007/s00300-015-1879-5 | es_ES |
dc.description.references | Fernández-Delgado, M., Giarrizzo, J. G., García-Amado, M. A., Contreras, M., Salazar, V., Barton, H., & Suárez, P. (2016). Evidence of Helicobacter spp. in freshwaters from Roraima Tepui, Guayana Shield, South America. Antonie van Leeuwenhoek, 109(4), 529-542. doi:10.1007/s10482-016-0658-9 | es_ES |
dc.description.references | Fukuda, K. (2002). Comparative analysis of Helicobacter DNAs and biliary pathology in patients with and without hepatobiliary cancer. Carcinogenesis, 23(11), 1927-1932. doi:10.1093/carcin/23.11.1927 | es_ES |
dc.description.references | García, A. (2014). Biofilm andHelicobacter pylori: From environment to human host. World Journal of Gastroenterology, 20(19), 5632. doi:10.3748/wjg.v20.i19.5632 | es_ES |
dc.description.references | Goldman, C. G., Loureiro, J. D., Matteo, M. J., Catalano, M., Gonzalez, A. B., Heredia, S. R., … Cremaschi, G. A. (2009). Helicobacter spp. from gastric biopsies of stranded South American fur seals (Arctocephalus australis). Research in Veterinary Science, 86(1), 18-21. doi:10.1016/j.rvsc.2008.04.001 | es_ES |
dc.description.references | De Groote, D., Van Doorn, L.-J., Van den Bulck, K., Vandamme, P., Vieth, M., Stolte, M., … Ducatelle, R. (2005). Detection of Non-pylori Helicobacter Species in «Helicobacter heilmannii»-Infected Humans. Helicobacter, 10(5), 398-406. doi:10.1111/j.1523-5378.2005.00347.x | es_ES |
dc.description.references | Haesebrouck, F., Pasmans, F., Flahou, B., Chiers, K., Baele, M., Meyns, T., … Ducatelle, R. (2009). Gastric Helicobacters in Domestic Animals and Nonhuman Primates and Their Significance for Human Health. Clinical Microbiology Reviews, 22(2), 202-223. doi:10.1128/cmr.00041-08 | es_ES |
dc.description.references | Hamada, T., Yokota, K., Ayada, K., Hirai, K., Kamada, T., Haruma, K., … Oguma, K. (2009). Detection ofHelicobacter hepaticusin Human Bile Samples of Patients with Biliary Disease. Helicobacter, 14(6), 545-551. doi:10.1111/j.1523-5378.2009.00729.x | es_ES |
dc.description.references | Johnson, C. H., Rice, E. W., & Reasoner, D. J. (1997). Inactivation of Helicobacter pylori by chlorination. Applied and Environmental Microbiology, 63(12), 4969-4970. doi:10.1128/aem.63.12.4969-4970.1997 | es_ES |
dc.description.references | Karagin, P. H. (2010). Helicobacterspecies and common gut bacterial DNA in gallbladder with cholecystitis. World Journal of Gastroenterology, 16(38), 4817. doi:10.3748/wjg.v16.i38.4817 | es_ES |
dc.description.references | Klindworth, A., Pruesse, E., Schweer, T., Peplies, J., Quast, C., Horn, M., & Glöckner, F. O. (2012). Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Research, 41(1), e1-e1. doi:10.1093/nar/gks808 | es_ES |
dc.description.references | Kopylova, E., Noé, L., & Touzet, H. (2012). SortMeRNA: fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics, 28(24), 3211-3217. doi:10.1093/bioinformatics/bts611 | es_ES |
dc.description.references | Kumaraswamy, R., Amha, Y. M., Anwar, M. Z., Henschel, A., Rodríguez, J., & Ahmad, F. (2014). Molecular Analysis for Screening Human Bacterial Pathogens in Municipal Wastewater Treatment and Reuse. Environmental Science & Technology, 48(19), 11610-11619. doi:10.1021/es502546t | es_ES |
dc.description.references | Li, D., Tong, T., Zeng, S., Lin, Y., Wu, S., & He, M. (2014). Quantification of viable bacteria in wastewater treatment plants by using propidium monoazide combined with quantitative PCR (PMA-qPCR). Journal of Environmental Sciences, 26(2), 299-306. doi:10.1016/s1001-0742(13)60425-8 | es_ES |
dc.description.references | Logares, R., Sunagawa, S., Salazar, G., Cornejo-Castillo, F. M., Ferrera, I., Sarmento, H., … Acinas, S. G. (2013). Metagenomic 16S rDNA Illumina tags are a powerful alternative to amplicon sequencing to explore diversity and structure of microbial communities. Environmental Microbiology, 16(9), 2659-2671. doi:10.1111/1462-2920.12250 | es_ES |
dc.description.references | Lyu, S., Chen, W., Zhang, W., Fan, Y., & Jiao, W. (2016). Wastewater reclamation and reuse in China: Opportunities and challenges. Journal of Environmental Sciences, 39, 86-96. doi:10.1016/j.jes.2015.11.012 | es_ES |
dc.description.references | Ma, Q., Qu, Y., Shen, W., Zhang, Z., Wang, J., Liu, Z., … Zhou, J. (2015). Bacterial community compositions of coking wastewater treatment plants in steel industry revealed by Illumina high-throughput sequencing. Bioresource Technology, 179, 436-443. doi:10.1016/j.biortech.2014.12.041 | es_ES |
dc.description.references | Mateos Muñoz, B., Pérez de la Serna, J., Ruiz de León, A., Serrano Falcón, B., Casabona Francés, S., Velasco Cerrudo, A., & Rey Díaz-Rubio, E. (2013). Enterohepatic Helicobacter other than Helicobacter pylori. Revista Española de Enfermedades Digestivas, 105(8), 477-485. doi:10.4321/s1130-01082013000800006 | es_ES |
dc.description.references | Moreno, Y., & Ferrús, M. A. (2012). Specific Detection of CultivableHelicobacter pyloriCells from Wastewater Treatment Plants. Helicobacter, 17(5), 327-332. doi:10.1111/j.1523-5378.2012.00961.x | es_ES |
dc.description.references | Moreno, Y., Ferrús, M. A., Alonso, J. L., Jiménez, A., & Hernández, J. (2003). Use of fluorescent in situ hybridization to evidence the presence of Helicobacter pylori in water. Water Research, 37(9), 2251-2256. doi:10.1016/s0043-1354(02)00624-3 | es_ES |
dc.description.references | Moreno, Y., Piqueres, P., Alonso, J. L., Jiménez, A., González, A., & Ferrús, M. A. (2007). Survival and viability of Helicobacter pylori after inoculation into chlorinated drinking water. Water Research, 41(15), 3490-3496. doi:10.1016/j.watres.2007.05.020 | es_ES |
dc.description.references | Moreno-Mesonero, L., Moreno, Y., Alonso, J. L., & Ferrús, M. A. (2016). DVC-FISH and PMA-qPCR techniques to assess the survival of Helicobacter pylori inside Acanthamoeba castellanii. Research in Microbiology, 167(1), 29-34. doi:10.1016/j.resmic.2015.08.002 | es_ES |
dc.description.references | Moreno-Mesonero, L., Hortelano, I., Moreno, Y., & Ferrús, M. A. (2020). Evidence of viable Helicobacter pylori and other bacteria of public health interest associated with free-living amoebae in lettuce samples by next generation sequencing and other molecular techniques. International Journal of Food Microbiology, 318, 108477. doi:10.1016/j.ijfoodmicro.2019.108477 | es_ES |
dc.description.references | Ndour, N. Y. B., Baudoin, E., Guissé, A., Seck, M., Khouma, M., & Brauman, A. (2008). Impact of irrigation water quality on soil nitrifying and total bacterial communities. Biology and Fertility of Soils, 44(5), 797-803. doi:10.1007/s00374-008-0285-3 | es_ES |
dc.description.references | Øverby, A., Yamagata Murayama, S., Matsui, H., & Nakamura, M. (2016). In the Aftermath of Helicobacter pylori: Other Helicobacters Rising Up to Become the Next Gastric Epidemic? Digestion, 93(4), 260-265. doi:10.1159/000445399 | es_ES |
dc.description.references | Parsons, L. R., Sheikh, B., Holden, R., & York, D. W. (2010). Reclaimed Water as an Alternative Water Source for Crop Irrigation. HortScience, 45(11), 1626-1629. doi:10.21273/hortsci.45.11.1626 | es_ES |
dc.description.references | Pathak, E., El-Borai, F. E., Campos-Herrera, R., Johnson, E. G., Stuart, R. J., Graham, J. H., & Duncan, L. W. (2012). Use of real-time PCR to discriminate parasitic and saprophagous behaviour by nematophagous fungi. Fungal Biology, 116(5), 563-573. doi:10.1016/j.funbio.2012.02.005 | es_ES |
dc.description.references | Pedrero, F., Kalavrouziotis, I., Alarcón, J. J., Koukoulakis, P., & Asano, T. (2010). Use of treated municipal wastewater in irrigated agriculture—Review of some practices in Spain and Greece. Agricultural Water Management, 97(9), 1233-1241. doi:10.1016/j.agwat.2010.03.003 | es_ES |
dc.description.references | Pedrero, F., Mounzer, O., Alarcón, J. J., Bayona, J. M., & Nicolás, E. (2012). The viability of irrigating mandarin trees with saline reclaimed water in a semi-arid Mediterranean region: a preliminary assessment. Irrigation Science, 31(4), 759-768. doi:10.1007/s00271-012-0359-8 | es_ES |
dc.description.references | Pereira, R. P. A., Peplies, J., Brettar, I., & Höfle, M. G. (2017). Development of a genus-specific next generation sequencing approach for sensitive and quantitative determination of the Legionella microbiome in freshwater systems. BMC Microbiology, 17(1). doi:10.1186/s12866-017-0987-5 | es_ES |
dc.description.references | Petersen, R. F., Harrington, C. S., Kortegaard, H. E., & On, S. L. W. (2007). A PCR-DGGE method for detection and identification of Campylobacter, Helicobacter, Arcobacter and related Epsilobacteria and its application to saliva samples from humans and domestic pets. Journal of Applied Microbiology, 103(6), 2601-2615. doi:10.1111/j.1365-2672.2007.03515.x | es_ES |
dc.description.references | Piqueres, P., Moreno, Y., Alonso, J. L., & Ferrús, M. A. (2006). A combination of direct viable count and fluorescent in situ hybridization for estimating Helicobacter pylori cell viability. Research in Microbiology, 157(4), 345-349. doi:10.1016/j.resmic.2005.09.003 | es_ES |
dc.description.references | Razzolini, M. T. P., Breternitz, B. S., Kuchkarian, B., & Bastos, V. K. (2020). Cryptosporidium and Giardia in urban wastewater: A challenge to overcome. Environmental Pollution, 257, 113545. doi:10.1016/j.envpol.2019.113545 | es_ES |
dc.description.references | Rognes, T., Flouri, T., Nichols, B., Quince, C., & Mahé, F. (2016). VSEARCH: a versatile open source tool for metagenomics. PeerJ, 4, e2584. doi:10.7717/peerj.2584 | es_ES |
dc.description.references | Vicente-Sánchez, J., Nicolás, E., Pedrero, F., Alarcón, J. J., Maestre-Valero, J. F., & Fernández, F. (2013). Arbuscular mycorrhizal symbiosis alleviates detrimental effects of saline reclaimed water in lettuce plants. Mycorrhiza, 24(5), 339-348. doi:10.1007/s00572-013-0542-7 | es_ES |
dc.description.references | Schloss, P. D., Gevers, D., & Westcott, S. L. (2011). Reducing the Effects of PCR Amplification and Sequencing Artifacts on 16S rRNA-Based Studies. PLoS ONE, 6(12), e27310. doi:10.1371/journal.pone.0027310 | es_ES |
dc.description.references | Steele, T. W., & McDermott, S. N. (1984). The use of membrane filters applied directly to the surface of agar plates for the isolation of campylobacter jejuni from feces. Pathology, 16(3), 263-265. doi:10.3109/00313028409068535 | es_ES |
dc.description.references | Twing, K. I., Kirchman, D. L., & Campbell, B. J. (2011). Temporal study of Helicobacter pylori presence in coastal freshwater, estuary and marine waters. Water Research, 45(4), 1897-1905. doi:10.1016/j.watres.2010.12.013 | es_ES |
dc.description.references | Vierheilig, J., Savio, D., Ley, R. E., Mach, R. L., Farnleitner, A. H., & Reischer, G. H. (2015). Potential applications of next generation DNA sequencing of 16S rRNA gene amplicons in microbial water quality monitoring. Water Science and Technology, 72(11), 1962-1972. doi:10.2166/wst.2015.407 | es_ES |
dc.description.references | Wagner, M., & Loy, A. (2002). Bacterial community composition and function in sewage treatment systems. Current Opinion in Biotechnology, 13(3), 218-227. doi:10.1016/s0958-1669(02)00315-4 | es_ES |
dc.description.references | Wang, X., Hu, M., Xia, Y., Wen, X., & Ding, K. (2012). Pyrosequencing Analysis of Bacterial Diversity in 14 Wastewater Treatment Systems in China. Applied and Environmental Microbiology, 78(19), 7042-7047. doi:10.1128/aem.01617-12 | es_ES |
dc.description.references | Ye, L., & Zhang, T. (2011). Pathogenic Bacteria in Sewage Treatment Plants as Revealed by 454 Pyrosequencing. Environmental Science & Technology, 45(17), 7173-7179. doi:10.1021/es201045e | es_ES |
dc.description.references | Ye, L., & Zhang, T. (2012). Bacterial communities in different sections of a municipal wastewater treatment plant revealed by 16S rDNA 454 pyrosequencing. Applied Microbiology and Biotechnology, 97(6), 2681-2690. doi:10.1007/s00253-012-4082-4 | es_ES |
dc.description.references | Yu, X., Jiang, W., Shi, Y., Ye, H., & Lin, J. (2019). Applications of sequencing technology in clinical microbial infection. Journal of Cellular and Molecular Medicine, 23(11), 7143-7150. doi:10.1111/jcmm.14624 | es_ES |
dc.description.references | Zhang, J., Kobert, K., Flouri, T., & Stamatakis, A. (2013). PEAR: a fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics, 30(5), 614-620. doi:10.1093/bioinformatics/btt593 | es_ES |