- -

Rank-one perturbations of matrix pencils

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Rank-one perturbations of matrix pencils

Mostrar el registro completo del ítem

Baragaña, I.; Roca Martinez, A. (2020). Rank-one perturbations of matrix pencils. Linear Algebra and its Applications. 606:170-191. https://doi.org/10.1016/j.laa.2020.07.030

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/161046

Ficheros en el ítem

Metadatos del ítem

Título: Rank-one perturbations of matrix pencils
Autor: Baragaña, Itziar Roca Martinez, Alicia
Entidad UPV: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Fecha difusión:
Resumen:
[EN] We solve the problem of characterizing the Kronecker structure of a matrix pencil obtained by a rank-one perturbation of another matrix pencil. The results hold over arbitrary fields. (C) 2020 Elsevier Inc. All rights ...[+]
Palabras clave: Matrix pencils , Kronecker structure , Rank perturbation
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Linear Algebra and its Applications. (issn: 0024-3795 )
DOI: 10.1016/j.laa.2020.07.030
Editorial:
Elsevier
Versión del editor: https://doi.org/10.1016/j.laa.2020.07.030
Código del Proyecto:
info:eu-repo/grantAgreement/AEI//MTM2017-90682-REDT/ES/RED TEMATICA DE ALGEBRA LINEAL, ANALISIS MATRICIAL Y APLICACIONES/
info:eu-repo/grantAgreement/UPV%2FEHU//GIU16%2F42/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MTM2017-83624-P/ES/MODELOS POLINOMIALES, SISTEMAS CUADRATICOS Y MATRICES: ESTRUCTURA, LINEALIZACIONES Y PERTURBACION/
Agradecimientos:
Partially supported by "Ministerio de Economia, Industria y Competitividad (MINECO)" of Spain and "Fondo Europeo de Desarrollo Regional (FEDER)" of EU through grants MTM2017-83624-P and MTM2017-90682-REDT, and by UPV/EHU ...[+]
Tipo: Artículo

References

Baragan͂a, I., & Roca, A. (2019). Weierstrass Structure and Eigenvalue Placement of Regular Matrix Pencils under Low Rank Perturbations. SIAM Journal on Matrix Analysis and Applications, 40(2), 440-453. doi:10.1137/18m1200245

Batzke, L. (2014). Generic rank-one perturbations of structured regular matrix pencils. Linear Algebra and its Applications, 458, 638-670. doi:10.1016/j.laa.2014.06.041

De Terán, F., & Dopico, F. M. (2007). Low Rank Perturbation of Kronecker Structures without Full Rank. SIAM Journal on Matrix Analysis and Applications, 29(2), 496-529. doi:10.1137/060659922 [+]
Baragan͂a, I., & Roca, A. (2019). Weierstrass Structure and Eigenvalue Placement of Regular Matrix Pencils under Low Rank Perturbations. SIAM Journal on Matrix Analysis and Applications, 40(2), 440-453. doi:10.1137/18m1200245

Batzke, L. (2014). Generic rank-one perturbations of structured regular matrix pencils. Linear Algebra and its Applications, 458, 638-670. doi:10.1016/j.laa.2014.06.041

De Terán, F., & Dopico, F. M. (2007). Low Rank Perturbation of Kronecker Structures without Full Rank. SIAM Journal on Matrix Analysis and Applications, 29(2), 496-529. doi:10.1137/060659922

De Terán, F., & Dopico, F. M. (2016). Generic Change of the Partial Multiplicities of Regular Matrix Pencils under Low-Rank Perturbations. SIAM Journal on Matrix Analysis and Applications, 37(3), 823-835. doi:10.1137/15m1022069

De Terán, F., Dopico, F. M., & Moro, J. (2008). Low Rank Perturbation of Weierstrass Structure. SIAM Journal on Matrix Analysis and Applications, 30(2), 538-547. doi:10.1137/050633020

Dodig, M. (2013). Completion up to a matrix pencil with column minimal indices as the only nontrivial Kronecker invariants. Linear Algebra and its Applications, 438(8), 3155-3173. doi:10.1016/j.laa.2012.12.040

Dodig, M., & Stošić, M. (2010). On Convexity of Polynomial Paths and Generalized Majorizations. The Electronic Journal of Combinatorics, 17(1). doi:10.37236/333

Dodig, M., & Stosic, M. (2013). On properties of the generalized majorization. The Electronic Journal of Linear Algebra, 26. doi:10.13001/1081-3810.1665

Dodig, M., & Stošić, M. (2014). The rank distance problem for pairs of matrices and a completion of quasi-regular matrix pencils. Linear Algebra and its Applications, 457, 313-347. doi:10.1016/j.laa.2014.05.029

Dodig, M., & Stošić, M. (2019). The General Matrix Pencil Completion Problem: A Minimal Case. SIAM Journal on Matrix Analysis and Applications, 40(1), 347-369. doi:10.1137/17m1155041

Gernandt, H., & Trunk, C. (2017). Eigenvalue Placement for Regular Matrix Pencils with Rank One Perturbations. SIAM Journal on Matrix Analysis and Applications, 38(1), 134-154. doi:10.1137/16m1066877

Hörmander, L., & Melin, A. (1994). A Remark on Perturbations of Compact Operators. MATHEMATICA SCANDINAVICA, 75, 255. doi:10.7146/math.scand.a-12518

Mehl, C., Mehrmann, V., Ran, A. C. M., & Rodman, L. (2011). Eigenvalue perturbation theory of classes of structured matrices under generic structured rank one perturbations. Linear Algebra and its Applications, 435(3), 687-716. doi:10.1016/j.laa.2010.07.025

Moro, J., & Dopico, F. M. (2003). Low Rank Perturbation of Jordan Structure. SIAM Journal on Matrix Analysis and Applications, 25(2), 495-506. doi:10.1137/s0895479802417118

Savchenko, S. V. (2003). Mathematical Notes, 74(3/4), 557-568. doi:10.1023/a:1026104129373

Savchenko, S. V. (2004). On the Change in the Spectral Properties of a Matrix under Perturbations of Sufficiently Low Rank. Functional Analysis and Its Applications, 38(1), 69-71. doi:10.1023/b:faia.0000024871.00388.4c

Silva, F. C. (1988). The rank of the difference of matrices with prescribed similarity classes. Linear and Multilinear Algebra, 24(1), 51-58. doi:10.1080/03081088808817897

Thompson, R. C. (1980). Invariant Factors Under Rank One Perturbations. Canadian Journal of Mathematics, 32(1), 240-245. doi:10.4153/cjm-1980-018-9

Zaballa, I. (1991). Pole Assignment and Additive Perturbations of Fixed Rank. SIAM Journal on Matrix Analysis and Applications, 12(1), 16-23. doi:10.1137/0612003

Zaballa, I. (1997). Controllability and Hermite indices of matrix pairs. International Journal of Control, 68(1), 61-86. doi:10.1080/002071797223730

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem