Baragan͂a, I., & Roca, A. (2019). Weierstrass Structure and Eigenvalue Placement of Regular Matrix Pencils under Low Rank Perturbations. SIAM Journal on Matrix Analysis and Applications, 40(2), 440-453. doi:10.1137/18m1200245
Batzke, L. (2014). Generic rank-one perturbations of structured regular matrix pencils. Linear Algebra and its Applications, 458, 638-670. doi:10.1016/j.laa.2014.06.041
De Terán, F., & Dopico, F. M. (2007). Low Rank Perturbation of Kronecker Structures without Full Rank. SIAM Journal on Matrix Analysis and Applications, 29(2), 496-529. doi:10.1137/060659922
[+]
Baragan͂a, I., & Roca, A. (2019). Weierstrass Structure and Eigenvalue Placement of Regular Matrix Pencils under Low Rank Perturbations. SIAM Journal on Matrix Analysis and Applications, 40(2), 440-453. doi:10.1137/18m1200245
Batzke, L. (2014). Generic rank-one perturbations of structured regular matrix pencils. Linear Algebra and its Applications, 458, 638-670. doi:10.1016/j.laa.2014.06.041
De Terán, F., & Dopico, F. M. (2007). Low Rank Perturbation of Kronecker Structures without Full Rank. SIAM Journal on Matrix Analysis and Applications, 29(2), 496-529. doi:10.1137/060659922
De Terán, F., & Dopico, F. M. (2016). Generic Change of the Partial Multiplicities of Regular Matrix Pencils under Low-Rank Perturbations. SIAM Journal on Matrix Analysis and Applications, 37(3), 823-835. doi:10.1137/15m1022069
De Terán, F., Dopico, F. M., & Moro, J. (2008). Low Rank Perturbation of Weierstrass Structure. SIAM Journal on Matrix Analysis and Applications, 30(2), 538-547. doi:10.1137/050633020
Dodig, M. (2013). Completion up to a matrix pencil with column minimal indices as the only nontrivial Kronecker invariants. Linear Algebra and its Applications, 438(8), 3155-3173. doi:10.1016/j.laa.2012.12.040
Dodig, M., & Stošić, M. (2010). On Convexity of Polynomial Paths and Generalized Majorizations. The Electronic Journal of Combinatorics, 17(1). doi:10.37236/333
Dodig, M., & Stosic, M. (2013). On properties of the generalized majorization. The Electronic Journal of Linear Algebra, 26. doi:10.13001/1081-3810.1665
Dodig, M., & Stošić, M. (2014). The rank distance problem for pairs of matrices and a completion of quasi-regular matrix pencils. Linear Algebra and its Applications, 457, 313-347. doi:10.1016/j.laa.2014.05.029
Dodig, M., & Stošić, M. (2019). The General Matrix Pencil Completion Problem: A Minimal Case. SIAM Journal on Matrix Analysis and Applications, 40(1), 347-369. doi:10.1137/17m1155041
Gernandt, H., & Trunk, C. (2017). Eigenvalue Placement for Regular Matrix Pencils with Rank One Perturbations. SIAM Journal on Matrix Analysis and Applications, 38(1), 134-154. doi:10.1137/16m1066877
Hörmander, L., & Melin, A. (1994). A Remark on Perturbations of Compact Operators. MATHEMATICA SCANDINAVICA, 75, 255. doi:10.7146/math.scand.a-12518
Mehl, C., Mehrmann, V., Ran, A. C. M., & Rodman, L. (2011). Eigenvalue perturbation theory of classes of structured matrices under generic structured rank one perturbations. Linear Algebra and its Applications, 435(3), 687-716. doi:10.1016/j.laa.2010.07.025
Moro, J., & Dopico, F. M. (2003). Low Rank Perturbation of Jordan Structure. SIAM Journal on Matrix Analysis and Applications, 25(2), 495-506. doi:10.1137/s0895479802417118
Savchenko, S. V. (2003). Mathematical Notes, 74(3/4), 557-568. doi:10.1023/a:1026104129373
Savchenko, S. V. (2004). On the Change in the Spectral Properties of a Matrix under Perturbations of Sufficiently Low Rank. Functional Analysis and Its Applications, 38(1), 69-71. doi:10.1023/b:faia.0000024871.00388.4c
Silva, F. C. (1988). The rank of the difference of matrices with prescribed similarity classes. Linear and Multilinear Algebra, 24(1), 51-58. doi:10.1080/03081088808817897
Thompson, R. C. (1980). Invariant Factors Under Rank One Perturbations. Canadian Journal of Mathematics, 32(1), 240-245. doi:10.4153/cjm-1980-018-9
Zaballa, I. (1991). Pole Assignment and Additive Perturbations of Fixed Rank. SIAM Journal on Matrix Analysis and Applications, 12(1), 16-23. doi:10.1137/0612003
Zaballa, I. (1997). Controllability and Hermite indices of matrix pairs. International Journal of Control, 68(1), 61-86. doi:10.1080/002071797223730
[-]