Lopes, S. M., & do Carmo, R. N. F. (2006). Deformable strut and tie model for the calculation of the plastic rotation capacity. Computers & Structures, 84(31-32), 2174-2183. doi:10.1016/j.compstruc.2006.08.028
Schlaich, J., Schafer, K., & Jennewein, M. (1987). Toward a Consistent Design of Structural Concrete. PCI Journal, 32(3), 74-150. doi:10.15554/pcij.05011987.74.150
Vecchio, F. J. (2000). Disturbed Stress Field Model for Reinforced Concrete: Formulation. Journal of Structural Engineering, 126(9), 1070-1077. doi:10.1061/(asce)0733-9445(2000)126:9(1070)
[+]
Lopes, S. M., & do Carmo, R. N. F. (2006). Deformable strut and tie model for the calculation of the plastic rotation capacity. Computers & Structures, 84(31-32), 2174-2183. doi:10.1016/j.compstruc.2006.08.028
Schlaich, J., Schafer, K., & Jennewein, M. (1987). Toward a Consistent Design of Structural Concrete. PCI Journal, 32(3), 74-150. doi:10.15554/pcij.05011987.74.150
Vecchio, F. J. (2000). Disturbed Stress Field Model for Reinforced Concrete: Formulation. Journal of Structural Engineering, 126(9), 1070-1077. doi:10.1061/(asce)0733-9445(2000)126:9(1070)
Leondardt, F. (1965). Reducing the shear reinforcement in reinforced concrete beams and slabs. Magazine of Concrete Research, 17(53), 187-198. doi:10.1680/macr.1965.17.53.187
Walraven, J. C. (1981). Fundamental Analysis of Aggregate Interlock. Journal of the Structural Division, 107(11), 2245-2270. doi:10.1061/jsdeag.0005820
Dei Poli, S., Di Prisco, M., & Gambarova, P. G. (1990). Stress Field in Web of RC Thin‐Webbed Beams Failing in Shear. Journal of Structural Engineering, 116(9), 2496-2514. doi:10.1061/(asce)0733-9445(1990)116:9(2496)
Campana, S., Fernández Ruiz, M., Anastasi, A., & Muttoni, A. (2013). Analysis of shear-transfer actions on one-way RC members based on measured cracking pattern and failure kinematics. Magazine of Concrete Research, 65(6), 386-404. doi:10.1680/macr.12.00142
Fernández Ruiz, M., Muttoni, A., & Sagaseta, J. (2015). Shear strength of concrete members without transverse reinforcement: A mechanical approach to consistently account for size and strain effects. Engineering Structures, 99, 360-372. doi:10.1016/j.engstruct.2015.05.007
Cavagnis, F., Fernández Ruiz, M., & Muttoni, A. (2017). An analysis of the shear-transfer actions in reinforced concrete members without transverse reinforcement based on refined experimental measurements. Structural Concrete, 19(1), 49-64. doi:10.1002/suco.201700145
Muttoni, A., Fernández Ruiz, M., & Simões, J. T. (2017). The theoretical principles of the critical shear crack theory for punching shear failures and derivation of consistent closed-form design expressions. Structural Concrete, 19(1), 174-190. doi:10.1002/suco.201700088
Marí, A., Cladera, A., Bairán, J., Oller, E., & Ribas, C. (2014). Shear-flexural strength mechanical model for the design and assessment of reinforced concrete beams subjected to point or distributed loads. Frontiers of Structural and Civil Engineering, 8(4), 337-353. doi:10.1007/s11709-014-0081-0
Fédération International du Béton (fib). Model Code 2010. Ernst & Sohn; 2012.
CEN, EN 1992-1-1:2004. Eurocode 2: Design of concrete structures - Part 1-1: General rules and rules for buildings; 2004.
UNE EN-12390-3:2009. “Ensayos de hormigón endurecido. Parte 3: Determinación de la resistencia a compresión del hormigón endurecido; 2009.
UNE EN-12390-6:2010. Ensayos de hormigón endurecido. Parte 6: Resistencia a tracción indirecta de probetas; 2010.
UNE EN-12390-13:2014. Ensayos de hormigón endurecido. Parte 13: Determinación del módulo secante de elasticidad en compression; 2014.
UNE-EN ISO 6892-1:2017. Materiales metálicos. Ensayo de tracción. Parte 1: Ensayo a temperatura ambiente; 2017.
Huber, P., Huber, T., & Kollegger, J. (2016). Investigation of the shear behavior of RC beams on the basis of measured crack kinematics. Engineering Structures, 113, 41-58. doi:10.1016/j.engstruct.2016.01.025
Simões, J. T., Fernández Ruiz, M., & Muttoni, A. (2018). Validation of the Critical Shear Crack Theory for punching of slabs without transverse reinforcement by means of a refined mechanical model. Structural Concrete, 19(1), 191-216. doi:10.1002/suco.201700280
[-]