- -

Experimental study of shear strength in continuous reinforced concrete beams with and without shear reinforcement

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Experimental study of shear strength in continuous reinforced concrete beams with and without shear reinforcement

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Monserrat López, Andrea es_ES
dc.contributor.author Miguel Sosa, Pedro es_ES
dc.contributor.author Bonet Senach, José Luís es_ES
dc.contributor.author Fernández Prada, Miguel Ángel es_ES
dc.date.accessioned 2021-02-16T04:31:38Z
dc.date.available 2021-02-16T04:31:38Z
dc.date.issued 2020-10-01 es_ES
dc.identifier.issn 0141-0296 es_ES
dc.identifier.uri http://hdl.handle.net/10251/161374
dc.description.abstract [EN] Shear strength of reinforced concrete beams has been extensively studied by many experimental campaigns conducted on simply supported beams. This situation has led to implement empirical design formulations in codes that cannot be representative of other real structures, such as continuous beams. These structures are characterised by the potential development of plastic hinges in areas of maximum shear and by the existence of an inflection point in the shear span. However, very few experimental studies on them have been conducted. In this paper, the shear strength of cantilever and continuous beams with different shear reinforcement ratios is analysed based on the test results of an experimental programme involving 15 beams. Nine beams of 9.00 m and six of 7.00 m with rectangular cross-sections were tested under different load and support conditions, which gave rise to 30 different shear tests (two tests per beam). Three different series were considered according to the shear reinforcement ratio (0%, 0.13% and 0.20%). Apart from traditional instrumentation, such as strain gauges and displacement transducers, Digital Image Correlation was employed to provide accurate displacement measurements. The results showed that the shear strength provided by concrete (different shear-transfer actions from shear reinforcement) decreased as bending rotation increased within both the elastic and plastic ranges of rotations developed in continuous beams. Moreover, this shear strength component was reduced for increasing shear reinforcement ratios. Shear slenderness was redefined for continuous beams that failed in shear after yielding of the tensile reinforcement and redistributing internal forces. The code formulation provided by ACI 318-19, Eurocode 2 and Model Code 2010 was checked against the experimental results, which showed that the iterative formulation that contemplates the M-V interaction considerably improved shear strength predictions from simple formulations. es_ES
dc.description.sponsorship This research was funded by grants from the Spanish Ministry of Economy and Competitiveness to Research Project BIA2015-64672-C4-4-R. The experimental programme was developed in the Laboratory of Concrete at the Institute of Concrete Science and Technology (ICITECH) of the Universitat Politecnica de Valencia (UPV), with concrete supplied by Caplansa. Andrea Monserrat was supported by the Conselleria d'Educacio, Investigacio, Cultura i Esport of the Generalitat Valenciana (Order 6/2015, DOCV no. 7615 15.09.2015) with European Regional Development Funds (ERDF) allocated by the EU. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Engineering Structures es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Shear test es_ES
dc.subject Shear strength es_ES
dc.subject Reinforced concrete es_ES
dc.subject Continuous beams es_ES
dc.subject Shear reinforcement es_ES
dc.subject Shear slenderness es_ES
dc.subject Bending rotation es_ES
dc.subject.classification INGENIERIA DE LA CONSTRUCCION es_ES
dc.title Experimental study of shear strength in continuous reinforced concrete beams with and without shear reinforcement es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.engstruct.2020.110967 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//BIA2015-64672-C4-4-R/ES/EVALUACION EXPERIMENTAL DE VIGAS CONTINUAS PRETENSADAS, CON Y SIN REFUERZO, Y PIEZAS COMPUESTAS DE DOS HORMIGONES, PARA LA EXTENSION DE SU VIDA UTIL./ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//ACIF%2F2016%2F164/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería de la Construcción y de Proyectos de Ingeniería Civil - Departament d'Enginyeria de la Construcció i de Projectes d'Enginyeria Civil es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Ciencia y Tecnología del Hormigón - Institut de Ciència i Tecnologia del Formigó es_ES
dc.description.bibliographicCitation Monserrat López, A.; Miguel Sosa, P.; Bonet Senach, JL.; Fernández Prada, MÁ. (2020). Experimental study of shear strength in continuous reinforced concrete beams with and without shear reinforcement. Engineering Structures. 220:1-16. https://doi.org/10.1016/j.engstruct.2020.110967 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.engstruct.2020.110967 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 16 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 220 es_ES
dc.relation.pasarela S\422100 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Reineck, K.-H., Bentz, E., Fitik, B., Kuchma, D. A., & Bayrak, O. (2014). ACI-DAfStb Databases for Shear Tests on Slender Reinforced Concrete Beams with Stirrups. ACI Structural Journal, 111(5). doi:10.14359/51686819 es_ES
dc.description.references ISLAM, M. S., PAM, H. J., & KWAN, A. K. H. (1998). SHEAR CAPACITY OF HIGH-STRENGTH CONCRETE BEAMS WITH THEIR POINT OF INFLECTION WITHIN THE SHEAR SPAN. Proceedings of the Institution of Civil Engineers - Structures and Buildings, 128(1), 91-99. doi:10.1680/istbu.1998.30038 es_ES
dc.description.references Tung, N. D., & Tue, N. V. (2016). Effect of support condition and load arrangement on the shear response of reinforced concrete beams without transverse reinforcement. Engineering Structures, 111, 370-382. doi:10.1016/j.engstruct.2015.12.022 es_ES
dc.description.references Cavagnis, F., Fernández Ruiz, M., & Muttoni, A. (2017). An analysis of the shear-transfer actions in reinforced concrete members without transverse reinforcement based on refined experimental measurements. Structural Concrete, 19(1), 49-64. doi:10.1002/suco.201700145 es_ES
dc.description.references Adam V, Classen M, Hillebrand M, Hegger J. Shear in continuous slab segments without shear reinforcement under distributed loads. fib Symposium. Concrete – innovations in materials, design and structures; 2019:1771–1778. es_ES
dc.description.references Tung, N. D., & Tue, N. V. (2016). A new approach to shear design of slender reinforced concrete members without transverse reinforcement. Engineering Structures, 107, 180-194. doi:10.1016/j.engstruct.2015.04.015 es_ES
dc.description.references SIA. Code 262 for concrete structures. Zürich, Switzerland: Swiss Society of Engineers and Architects; 2013. es_ES
dc.description.references ACI Committee 318. Building code requirements for structural concrete (ACI 318-19); and commentary (ACI 318R-19). Farmington Hills: American Concrete Institute; 2019. es_ES
dc.description.references CEN, EN 1992-1-1:2004. Eurocode 2: Design of concrete structures – Part 1-1: General rules and rules for buildings; 2004. es_ES
dc.description.references Monserrat López, A., Miguel Sosa, P. F., Bonet Senach, J. L., & Fernández Prada, M. Á. (2020). Influence of the plastic hinge rotations on shear strength in continuous reinforced concrete beams with shear reinforcement. Engineering Structures, 207, 110242. doi:10.1016/j.engstruct.2020.110242 es_ES
dc.description.references UNE EN-12390-3:2009. Ensayos de hormigón endurecido. Parte 3: Determinación de la resistencia a compresión del hormigón endurecido; 2009. es_ES
dc.description.references UNE EN-12390-6:2010. Ensayos de hormigón endurecido. Parte 6: Resistencia a tracción indirecta de probetas; 2010. es_ES
dc.description.references UNE EN-12390-13:2014. Ensayos de hormigón endurecido. Parte 13: Determinación del módulo secante de elasticidad en compression; 2014. es_ES
dc.description.references UNE-EN ISO 6892-1:2017. Materiales metálicos. Ensayo de tracción. Parte 1: Ensayo a temperatura ambiente; 2017. es_ES
dc.description.references Campana, S., Fernández Ruiz, M., Anastasi, A., & Muttoni, A. (2013). Analysis of shear-transfer actions on one-way RC members based on measured cracking pattern and failure kinematics. Magazine of Concrete Research, 65(6), 386-404. doi:10.1680/macr.12.00142 es_ES
dc.description.references Huber, P., Huber, T., & Kollegger, J. (2016). Investigation of the shear behavior of RC beams on the basis of measured crack kinematics. Engineering Structures, 113, 41-58. doi:10.1016/j.engstruct.2016.01.025 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem