Mostrar el registro sencillo del ítem
dc.contributor.author | Monserrat López, Andrea | es_ES |
dc.contributor.author | Miguel Sosa, Pedro | es_ES |
dc.contributor.author | Bonet Senach, José Luís | es_ES |
dc.contributor.author | Fernández Prada, Miguel Ángel | es_ES |
dc.date.accessioned | 2021-02-16T04:31:38Z | |
dc.date.available | 2021-02-16T04:31:38Z | |
dc.date.issued | 2020-10-01 | es_ES |
dc.identifier.issn | 0141-0296 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/161374 | |
dc.description.abstract | [EN] Shear strength of reinforced concrete beams has been extensively studied by many experimental campaigns conducted on simply supported beams. This situation has led to implement empirical design formulations in codes that cannot be representative of other real structures, such as continuous beams. These structures are characterised by the potential development of plastic hinges in areas of maximum shear and by the existence of an inflection point in the shear span. However, very few experimental studies on them have been conducted. In this paper, the shear strength of cantilever and continuous beams with different shear reinforcement ratios is analysed based on the test results of an experimental programme involving 15 beams. Nine beams of 9.00 m and six of 7.00 m with rectangular cross-sections were tested under different load and support conditions, which gave rise to 30 different shear tests (two tests per beam). Three different series were considered according to the shear reinforcement ratio (0%, 0.13% and 0.20%). Apart from traditional instrumentation, such as strain gauges and displacement transducers, Digital Image Correlation was employed to provide accurate displacement measurements. The results showed that the shear strength provided by concrete (different shear-transfer actions from shear reinforcement) decreased as bending rotation increased within both the elastic and plastic ranges of rotations developed in continuous beams. Moreover, this shear strength component was reduced for increasing shear reinforcement ratios. Shear slenderness was redefined for continuous beams that failed in shear after yielding of the tensile reinforcement and redistributing internal forces. The code formulation provided by ACI 318-19, Eurocode 2 and Model Code 2010 was checked against the experimental results, which showed that the iterative formulation that contemplates the M-V interaction considerably improved shear strength predictions from simple formulations. | es_ES |
dc.description.sponsorship | This research was funded by grants from the Spanish Ministry of Economy and Competitiveness to Research Project BIA2015-64672-C4-4-R. The experimental programme was developed in the Laboratory of Concrete at the Institute of Concrete Science and Technology (ICITECH) of the Universitat Politecnica de Valencia (UPV), with concrete supplied by Caplansa. Andrea Monserrat was supported by the Conselleria d'Educacio, Investigacio, Cultura i Esport of the Generalitat Valenciana (Order 6/2015, DOCV no. 7615 15.09.2015) with European Regional Development Funds (ERDF) allocated by the EU. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Engineering Structures | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Shear test | es_ES |
dc.subject | Shear strength | es_ES |
dc.subject | Reinforced concrete | es_ES |
dc.subject | Continuous beams | es_ES |
dc.subject | Shear reinforcement | es_ES |
dc.subject | Shear slenderness | es_ES |
dc.subject | Bending rotation | es_ES |
dc.subject.classification | INGENIERIA DE LA CONSTRUCCION | es_ES |
dc.title | Experimental study of shear strength in continuous reinforced concrete beams with and without shear reinforcement | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.engstruct.2020.110967 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//BIA2015-64672-C4-4-R/ES/EVALUACION EXPERIMENTAL DE VIGAS CONTINUAS PRETENSADAS, CON Y SIN REFUERZO, Y PIEZAS COMPUESTAS DE DOS HORMIGONES, PARA LA EXTENSION DE SU VIDA UTIL./ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//ACIF%2F2016%2F164/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería de la Construcción y de Proyectos de Ingeniería Civil - Departament d'Enginyeria de la Construcció i de Projectes d'Enginyeria Civil | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto de Ciencia y Tecnología del Hormigón - Institut de Ciència i Tecnologia del Formigó | es_ES |
dc.description.bibliographicCitation | Monserrat López, A.; Miguel Sosa, P.; Bonet Senach, JL.; Fernández Prada, MÁ. (2020). Experimental study of shear strength in continuous reinforced concrete beams with and without shear reinforcement. Engineering Structures. 220:1-16. https://doi.org/10.1016/j.engstruct.2020.110967 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.engstruct.2020.110967 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 16 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 220 | es_ES |
dc.relation.pasarela | S\422100 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Reineck, K.-H., Bentz, E., Fitik, B., Kuchma, D. A., & Bayrak, O. (2014). ACI-DAfStb Databases for Shear Tests on Slender Reinforced Concrete Beams with Stirrups. ACI Structural Journal, 111(5). doi:10.14359/51686819 | es_ES |
dc.description.references | ISLAM, M. S., PAM, H. J., & KWAN, A. K. H. (1998). SHEAR CAPACITY OF HIGH-STRENGTH CONCRETE BEAMS WITH THEIR POINT OF INFLECTION WITHIN THE SHEAR SPAN. Proceedings of the Institution of Civil Engineers - Structures and Buildings, 128(1), 91-99. doi:10.1680/istbu.1998.30038 | es_ES |
dc.description.references | Tung, N. D., & Tue, N. V. (2016). Effect of support condition and load arrangement on the shear response of reinforced concrete beams without transverse reinforcement. Engineering Structures, 111, 370-382. doi:10.1016/j.engstruct.2015.12.022 | es_ES |
dc.description.references | Cavagnis, F., Fernández Ruiz, M., & Muttoni, A. (2017). An analysis of the shear-transfer actions in reinforced concrete members without transverse reinforcement based on refined experimental measurements. Structural Concrete, 19(1), 49-64. doi:10.1002/suco.201700145 | es_ES |
dc.description.references | Adam V, Classen M, Hillebrand M, Hegger J. Shear in continuous slab segments without shear reinforcement under distributed loads. fib Symposium. Concrete – innovations in materials, design and structures; 2019:1771–1778. | es_ES |
dc.description.references | Tung, N. D., & Tue, N. V. (2016). A new approach to shear design of slender reinforced concrete members without transverse reinforcement. Engineering Structures, 107, 180-194. doi:10.1016/j.engstruct.2015.04.015 | es_ES |
dc.description.references | SIA. Code 262 for concrete structures. Zürich, Switzerland: Swiss Society of Engineers and Architects; 2013. | es_ES |
dc.description.references | ACI Committee 318. Building code requirements for structural concrete (ACI 318-19); and commentary (ACI 318R-19). Farmington Hills: American Concrete Institute; 2019. | es_ES |
dc.description.references | CEN, EN 1992-1-1:2004. Eurocode 2: Design of concrete structures – Part 1-1: General rules and rules for buildings; 2004. | es_ES |
dc.description.references | Monserrat López, A., Miguel Sosa, P. F., Bonet Senach, J. L., & Fernández Prada, M. Á. (2020). Influence of the plastic hinge rotations on shear strength in continuous reinforced concrete beams with shear reinforcement. Engineering Structures, 207, 110242. doi:10.1016/j.engstruct.2020.110242 | es_ES |
dc.description.references | UNE EN-12390-3:2009. Ensayos de hormigón endurecido. Parte 3: Determinación de la resistencia a compresión del hormigón endurecido; 2009. | es_ES |
dc.description.references | UNE EN-12390-6:2010. Ensayos de hormigón endurecido. Parte 6: Resistencia a tracción indirecta de probetas; 2010. | es_ES |
dc.description.references | UNE EN-12390-13:2014. Ensayos de hormigón endurecido. Parte 13: Determinación del módulo secante de elasticidad en compression; 2014. | es_ES |
dc.description.references | UNE-EN ISO 6892-1:2017. Materiales metálicos. Ensayo de tracción. Parte 1: Ensayo a temperatura ambiente; 2017. | es_ES |
dc.description.references | Campana, S., Fernández Ruiz, M., Anastasi, A., & Muttoni, A. (2013). Analysis of shear-transfer actions on one-way RC members based on measured cracking pattern and failure kinematics. Magazine of Concrete Research, 65(6), 386-404. doi:10.1680/macr.12.00142 | es_ES |
dc.description.references | Huber, P., Huber, T., & Kollegger, J. (2016). Investigation of the shear behavior of RC beams on the basis of measured crack kinematics. Engineering Structures, 113, 41-58. doi:10.1016/j.engstruct.2016.01.025 | es_ES |