- -

Recovery of fatty acid composition in Mediterranean yellowtail (Seriola dumerili, Risso 1810) fed a fish-oil finishing diet

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Recovery of fatty acid composition in Mediterranean yellowtail (Seriola dumerili, Risso 1810) fed a fish-oil finishing diet

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Bordignon, Francesco es_ES
dc.contributor.author Martínez-Llorens, Silvia es_ES
dc.contributor.author Trocino, Angela es_ES
dc.contributor.author Jover Cerda, Miguel es_ES
dc.contributor.author Tomas-Vidal, A. es_ES
dc.date.accessioned 2021-02-16T04:32:44Z
dc.date.available 2021-02-16T04:32:44Z
dc.date.issued 2020-07 es_ES
dc.identifier.uri http://hdl.handle.net/10251/161396
dc.description.abstract [EN] The present study evaluated the effects of wash-out on the fatty acid (FA) composition in the muscles of Mediterranean yellowtail. After 109 days during which fish were fed either a fish oil (FO)-based diet (FO 100) or a diet (FO 0) in which FO was completely substituted by vegetable oils, all fish were subjected to a wash-out with FO 100 diet for 90 days. The FA profile of muscles in fish fed FO 0 diet at the beginning of the experiment reflected that of dietary vegetable oils, rich in linoleic acid (LA), and alpha-linolenic acid (ALA), and was deficient in AA (arachidonic acid), EPA (eicosapentaenoic acid), and DHA (docosahexaenoic acid). No essential FA were fully restored in fish previously fed FO 0 diet on 45th or 90th day of wash-out. At the end of wash-out, the FA composition showed that AA, EPA, and DHA in the white muscles increased by +33%, +16%, and +43% (p< 0.001), respectively. Similarly, AA and DHA in the red muscles increased by +33% and +41% respectively, while EPA remained similar to fish fed FO 0 diet exclusively. Therefore, a 90-d wash-out can partially improve the FA profile in muscles of Mediterranean yellowtail previously fed vegetable oil-based diets. es_ES
dc.description.sponsorship The Ph.D. grant held by Francesco Bordignon is funded by the ECCEAQUA project (MIUR; CUP: C26C18000030004). es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof International Journal of Molecular Sciences es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Wash-out es_ES
dc.subject Greater amberjack es_ES
dc.subject Thrombogenicity es_ES
dc.subject Atherogenicity es_ES
dc.subject EPA es_ES
dc.subject DHA es_ES
dc.subject.classification PRODUCCION ANIMAL es_ES
dc.title Recovery of fatty acid composition in Mediterranean yellowtail (Seriola dumerili, Risso 1810) fed a fish-oil finishing diet es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/ijms21144871 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UNIPD//CUP: C26C18000030004/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//AICO%2F2015%2F123/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ciencia Animal - Departament de Ciència Animal es_ES
dc.description.bibliographicCitation Bordignon, F.; Martínez-Llorens, S.; Trocino, A.; Jover Cerda, M.; Tomas-Vidal, A. (2020). Recovery of fatty acid composition in Mediterranean yellowtail (Seriola dumerili, Risso 1810) fed a fish-oil finishing diet. International Journal of Molecular Sciences. 21(14):1-18. https://doi.org/10.3390/ijms21144871 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/ijms21144871 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 18 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 21 es_ES
dc.description.issue 14 es_ES
dc.identifier.eissn 1422-0067 es_ES
dc.identifier.pmid 32660169 es_ES
dc.identifier.pmcid PMC7402285 es_ES
dc.relation.pasarela S\415115 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Università degli studi di Padova es_ES
dc.description.references Chaves-Pozo, E., Abellán, E., Baixauli, P., & Arizcun, M. (2019). An overview of the reproductive cycle of cultured specimens of a potential candidate for Mediterranean aquaculture, Umbrina cirrosa. Aquaculture, 505, 137-149. doi:10.1016/j.aquaculture.2019.02.039 es_ES
dc.description.references Roo, J., Hernández-Cruz, C. M., Mesa-Rodriguez, A., Fernández-Palacios, H., & Izquierdo, M. S. (2019). Effect of increasing n-3 HUFA content in enriched Artemia on growth, survival and skeleton anomalies occurrence of greater amberjack Seriola dumerili larvae. Aquaculture, 500, 651-659. doi:10.1016/j.aquaculture.2018.09.065 es_ES
dc.description.references Sicuro, B., & Luzzana, U. (2016). The State ofSeriola spp.Other Than Yellowtail (S. quinqueradiata) Farming in the World. Reviews in Fisheries Science & Aquaculture, 24(4), 314-325. doi:10.1080/23308249.2016.1187583 es_ES
dc.description.references Codabaccus, M. B., Ng, W.-K., Nichols, P. D., & Carter, C. G. (2013). Restoration of EPA and DHA in rainbow trout (Oncorhynchus mykiss) using a finishing fish oil diet at two different water temperatures. Food Chemistry, 141(1), 236-244. doi:10.1016/j.foodchem.2013.02.032 es_ES
dc.description.references Turchini, G. M., Torstensen, B. E., & Ng, W.-K. (2009). Fish oil replacement in finfish nutrition. Reviews in Aquaculture, 1(1), 10-57. doi:10.1111/j.1753-5131.2008.01001.x es_ES
dc.description.references Fountoulaki, E., Vasilaki, A., Hurtado, R., Grigorakis, K., Karacostas, I., Nengas, I., … Alexis, M. N. (2009). Fish oil substitution by vegetable oils in commercial diets for gilthead sea bream (Sparus aurata L.); effects on growth performance, flesh quality and fillet fatty acid profile. Aquaculture, 289(3-4), 317-326. doi:10.1016/j.aquaculture.2009.01.023 es_ES
dc.description.references Shepherd, C. J., & Jackson, A. J. (2013). Global fishmeal and fish-oil supply: inputs, outputs and marketsa. Journal of Fish Biology, 83(4), 1046-1066. doi:10.1111/jfb.12224 es_ES
dc.description.references Naylor, R. L., Hardy, R. W., Bureau, D. P., Chiu, A., Elliott, M., Farrell, A. P., … Nichols, P. D. (2009). Feeding aquaculture in an era of finite resources. Proceedings of the National Academy of Sciences, 106(36), 15103-15110. doi:10.1073/pnas.0905235106 es_ES
dc.description.references Monge-Ortiz, R., Tomás-Vidal, A., Rodriguez-Barreto, D., Martínez-Llorens, S., Pérez, J. A., Jover-Cerdá, M., & Lorenzo, A. (2017). Replacement of fish oil with vegetable oil blends in feeds for greater amberjack (Seriola dumerili) juveniles: Effect on growth performance, feed efficiency, tissue fatty acid composition and flesh nutritional value. Aquaculture Nutrition, 24(1), 605-615. doi:10.1111/anu.12595 es_ES
dc.description.references Izquierdo, M. S., Montero, D., Robaina, L., Caballero, M. J., Rosenlund, G., & Ginés, R. (2005). Alterations in fillet fatty acid profile and flesh quality in gilthead seabream (Sparus aurata) fed vegetable oils for a long term period. Recovery of fatty acid profiles by fish oil feeding. Aquaculture, 250(1-2), 431-444. doi:10.1016/j.aquaculture.2004.12.001 es_ES
dc.description.references Montero, D., Robaina, L., Caballero, M. J., Ginés, R., & Izquierdo, M. S. (2005). Growth, feed utilization and flesh quality of European sea bass (Dicentrarchus labrax) fed diets containing vegetable oils: A time-course study on the effect of a re-feeding period with a 100% fish oil diet. Aquaculture, 248(1-4), 121-134. doi:10.1016/j.aquaculture.2005.03.003 es_ES
dc.description.references Tocher, D. R. (2010). Fatty acid requirements in ontogeny of marine and freshwater fish. Aquaculture Research, 41(5), 717-732. doi:10.1111/j.1365-2109.2008.02150.x es_ES
dc.description.references Mourente, G., & Bell, J. G. (2006). Partial replacement of dietary fish oil with blends of vegetable oils (rapeseed, linseed and palm oils) in diets for European sea bass (Dicentrarchus labrax L.) over a long term growth study: Effects on muscle and liver fatty acid composition and effectiveness of a fish oil finishing diet. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 145(3-4), 389-399. doi:10.1016/j.cbpb.2006.08.012 es_ES
dc.description.references Turchini, G. M., Mentasti, T., Frøyland, L., Orban, E., Caprino, F., Moretti, V. M., & Valfré, F. (2003). Effects of alternative dietary lipid sources on performance, tissue chemical composition, mitochondrial fatty acid oxidation capabilities and sensory characteristics in brown trout (Salmo trutta L.). Aquaculture, 225(1-4), 251-267. doi:10.1016/s0044-8486(03)00294-1 es_ES
dc.description.references Jobling, M. (2004). Are modifications in tissue fatty acid profiles following a change in diet the result of dilution? Aquaculture, 232(1-4), 551-562. doi:10.1016/j.aquaculture.2003.07.001 es_ES
dc.description.references Connor, W. E. (2000). Importance of n−3 fatty acids in health and disease. The American Journal of Clinical Nutrition, 71(1), 171S-175S. doi:10.1093/ajcn/71.1.171s es_ES
dc.description.references Ruxton, C. H. S., Reed, S. C., Simpson, M. J. A., & Millington, K. J. (2004). The health benefits of omega-3 polyunsaturated fatty acids: a review of the evidence. Journal of Human Nutrition and Dietetics, 17(5), 449-459. doi:10.1111/j.1365-277x.2004.00552.x es_ES
dc.description.references Seierstad, S. L., Seljeflot, I., Johansen, O., Hansen, R., Haugen, M., Rosenlund, G., … Arnesen, H. (2005). Dietary intake of differently fed salmon; the influence on markers of human atherosclerosis. European Journal of Clinical Investigation, 35(1), 52-59. doi:10.1111/j.1365-2362.2005.01443.x es_ES
dc.description.references Williams, C. M. (2000). Dietary fatty acids and human health. Annales de Zootechnie, 49(3), 165-180. doi:10.1051/animres:2000116 es_ES
dc.description.references Olsen, S. F. (2002). Low consumption of seafood in early pregnancy as a risk factor for preterm delivery: prospective cohort study. BMJ, 324(7335), 447-450. doi:10.1136/bmj.324.7335.447 es_ES
dc.description.references Breslow, J. L. (2006). n−3 Fatty acids and cardiovascular disease. The American Journal of Clinical Nutrition, 83(6), 1477S-1482S. doi:10.1093/ajcn/83.6.1477s es_ES
dc.description.references Rosenberg, I. H. (2002). Fish — Food to Calm the Heart. New England Journal of Medicine, 346(15), 1102-1103. doi:10.1056/nejm200204113461502 es_ES
dc.description.references Hu, F. B. (2002). Fish and Omega-3 Fatty Acid Intake and Risk of Coronary Heart Disease in Women. JAMA, 287(14), 1815. doi:10.1001/jama.287.14.1815 es_ES
dc.description.references Robin, J. ., Regost, C., Arzel, J., & Kaushik, S. . (2003). Fatty acid profile of fish following a change in dietary fatty acid source: model of fatty acid composition with a dilution hypothesis. Aquaculture, 225(1-4), 283-293. doi:10.1016/s0044-8486(03)00296-5 es_ES
dc.description.references Turchini, G. M., Francis, D. S., & De Silva, S. S. (2006). Modification of tissue fatty acid composition in Murray cod (Maccullochella peelii peelii, Mitchell) resulting from a shift from vegetable oil diets to a fish oil diet. Aquaculture Research, 37(6), 570-585. doi:10.1111/j.1365-2109.2006.01465.x es_ES
dc.description.references Glencross, B. D., Hawkins, W. E., & Curnow, J. G. (2003). Restoration of the fatty acid composition of red seabream (Pagrus auratus) using a fish oil finishing diet after grow-out on plant oil based diets. Aquaculture Nutrition, 9(6), 409-418. doi:10.1046/j.1365-2095.2003.00272.x es_ES
dc.description.references Reis, B., Cabral, E. M., Fernandes, T. J. R., Castro-Cunha, M., Oliveira, M. B. P. P., Cunha, L. M., & Valente, L. M. P. (2014). Long-term feeding of vegetable oils to Senegalese sole until market size: Effects on growth and flesh quality. Recovery of fatty acid profiles by a fish oil finishing diet. Aquaculture, 434, 425-433. doi:10.1016/j.aquaculture.2014.09.002 es_ES
dc.description.references TURCHINI, G. M., FRANCIS, D. S., & DE SILVA, S. S. (2007). Finishing diets stimulate compensatory growth: results of a study on Murray cod, Maccullochella peelii peelii. Aquaculture Nutrition, 13(5), 351-360. doi:10.1111/j.1365-2095.2007.00483.x es_ES
dc.description.references Lane, R. L., Trushenski, J. T., & Kohler, C. C. (2006). Modification of fillet composition and evidence of differential fatty acid turnover in sunshine bass Morone chrysops × M. saxatilis following change in dietary lipid source. Lipids, 41(11), 1029-1038. doi:10.1007/s11745-006-5053-2 es_ES
dc.description.references THANUTHONG, T., FRANCIS, D. S., SENADHEERA, S. P. S. D., JONES, P. L., & TURCHINI, G. M. (2012). Short-term food deprivation before a fish oil finishing strategy improves the deposition of n-3 LC-PUFA, but not the washing-out of C18 PUFA in rainbow trout. Aquaculture Nutrition, 18(4), 441-456. doi:10.1111/j.1365-2095.2011.00909.x es_ES
dc.description.references Yıldız, M., Eroldoğan, T. O., Ofori-Mensah, S., Engin, K., & Baltacı, M. A. (2018). The effects of fish oil replacement by vegetable oils on growth performance and fatty acid profile of rainbow trout: Re-feeding with fish oil finishing diet improved the fatty acid composition. Aquaculture, 488, 123-133. doi:10.1016/j.aquaculture.2017.12.030 es_ES
dc.description.references Bell, J. G., Henderson, R. J., Tocher, D. R., & Sargent, J. R. (2004). Replacement of dietary fish oil with increasing levels of linseed oil: Modification of flesh fatty acid compositions in Atlantic salmon (Salmo salar) using a fish oil finishing diet. Lipids, 39(3), 223-232. doi:10.1007/s11745-004-1223-5 es_ES
dc.description.references Bell, J. G., McGhee, F., Campbell, P. J., & Sargent, J. R. (2003). Rapeseed oil as an alternative to marine fish oil in diets of post-smolt Atlantic salmon (Salmo salar): changes in flesh fatty acid composition and effectiveness of subsequent fish oil «wash out». Aquaculture, 218(1-4), 515-528. doi:10.1016/s0044-8486(02)00462-3 es_ES
dc.description.references Bell, J. G., Tocher, D. R., Henderson, R. J., Dick, J. R., & Crampton, V. O. (2003). Altered Fatty Acid Compositions in Atlantic Salmon (Salmo salar) Fed Diets Containing Linseed and Rapeseed Oils Can Be Partially Restored by a Subsequent Fish Oil Finishing Diet. The Journal of Nutrition, 133(9), 2793-2801. doi:10.1093/jn/133.9.2793 es_ES
dc.description.references TORSTENSEN, B., FROYLAND, L., ORNSRUD, R., & LIE, O. (2004). Tailoring of a cardioprotective muscle fatty acid composition of Atlantic salmon (Salmo salar) fed vegetable oils. Food Chemistry, 87(4), 567-580. doi:10.1016/j.foodchem.2004.01.009 es_ES
dc.description.references Carpene, E., Martin, B., & Dalla Libera, L. (1998). Fish Physiology and Biochemistry, 19(3), 229-238. doi:10.1023/a:1007742328964 es_ES
dc.description.references Teulier, L., Thoral, E., Queiros, Q., McKenzie, D. J., Roussel, D., Dutto, G., … Saraux, C. (2019). Muscle bioenergetics of two emblematic Mediterranean fish species: Sardina pilchardus and Sparus aurata. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 235, 174-179. doi:10.1016/j.cbpa.2019.06.008 es_ES
dc.description.references PALMERI, G., TURCHINI, G., & DESILVA, S. (2007). Lipid characterisation and distribution in the fillet of the farmed Australian native fish, Murray cod (Maccullochella peelii peelii). Food Chemistry, 102(3), 796-807. doi:10.1016/j.foodchem.2006.06.018 es_ES
dc.description.references Calder, P. C. (2012). Long-chain fatty acids and inflammation. Proceedings of the Nutrition Society, 71(2), 284-289. doi:10.1017/s0029665112000067 es_ES
dc.description.references Leaf, A. (2001). Plasma Nonesterified Fatty Acid Concentration as a Risk Factor for Sudden Cardiac Death. Circulation, 104(7), 744-745. doi:10.1161/01.cir.104.7.744 es_ES
dc.description.references Ghaeni, M., & Ghahfarokhi, K. N. (2013). Fatty Acids Profile, Atherogenic (IA) and Thrombogenic (IT) Health Lipid Indices in Leiognathusbindus and Upeneussulphureus. Journal of Marine Science: Research & Development, 03(04). doi:10.4172/2155-9910.1000138 es_ES
dc.description.references DURMUŞ, M. (2019). Fish oil for human health: omega-3 fatty acid profiles of marine seafood species. Food Science and Technology, 39(suppl 2), 454-461. doi:10.1590/fst.21318 es_ES
dc.description.references Ouraji, H., Shabanpour, B., Kenari, A. A., Shabani, A., Nezami, S., Sudagar, M., & Faghani, S. (2009). Total lipid, fatty acid composition and lipid oxidation of Indian white shrimp (Fenneropenaeus indicus) fed diets containing different lipid sources. Journal of the Science of Food and Agriculture, 89(6), 993-997. doi:10.1002/jsfa.3545 es_ES
dc.description.references Stancheva, M., Merdzhanova, A., Dobreva, D. A., & Makedonski, L. (2014). Common carp (Cyprinus caprio) and European catfish (Sillurus glanis) from the Danube River as sources of fat soluble vitamins and fatty acids. Czech Journal of Food Sciences, 32(No. 1), 16-24. doi:10.17221/31/2013-cjfs es_ES
dc.description.references Martínez-Llorens, S., Vidal, A. T., Moñino, A. V., Torres, M. P., & Cerdá, M. J. (2007). Effects of dietary soybean oil concentration on growth, nutrient utilization and muscle fatty acid composition of gilthead sea bream (Sparus aurata L.). Aquaculture Research, 38(1), 76-81. doi:10.1111/j.1365-2109.2006.01636.x es_ES
dc.description.references Regost, C., Arzel, J., Cardinal, M., Rosenlund, G., & Kaushik, S. J. (2003). Total replacement of fish oil by soybean or linseed oil with a return to fish oil in Turbot (Psetta maxima). Aquaculture, 220(1-4), 737-747. doi:10.1016/s0044-8486(02)00655-5 es_ES
dc.description.references Kiessling, K.-H., & Kiessling, A. (1993). Selective utilization of fatty acids in rainbow trout (Oncorhynchus mykiss Walbaum) red muscle mitochondria. Canadian Journal of Zoology, 71(2), 248-251. doi:10.1139/z93-035 es_ES
dc.description.references Linares, F., & Henderson, R. J. (1991). Incorporation of 14C-labelled polyunsaturated fatty acids by juvenile turbot, Scophthalmus maximus (L.) in vivo. Journal of Fish Biology, 38(3), 335-347. doi:10.1111/j.1095-8649.1991.tb03124.x es_ES
dc.description.references Tocher, D. R., & Sargent, J. R. (1990). Incorporation into Phospholipid Classes and Metabolism via Desaturation and Elongation of Various14C-Labelled (n-3) and (n-6) Polyunsaturated Fatty Acids in Trout Astrocytes in Primary Culture. Journal of Neurochemistry, 54(6), 2118-2124. doi:10.1111/j.1471-4159.1990.tb04918.x es_ES
dc.description.references Kiessling, A., Pickova, J., Johansson, L., Åsgård, T., Storebakken, T., & Kiessling, K.-H. (2001). Changes in fatty acid composition in muscle and adipose tissue of farmed rainbow trout (Oncorhynchus mykiss) in relation to ration and age. Food Chemistry, 73(3), 271-284. doi:10.1016/s0308-8146(00)00297-1 es_ES
dc.description.references Jeong, B.-Y., Jeong, W.-G., Moon, S.-K., & Ohshima, T. (2002). Preferential accumulation of fatty acids in the testis and ovary of cultured and wild sweet smelt Plecoglossus altivelis. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 131(2), 251-259. doi:10.1016/s1096-4959(01)00501-2 es_ES
dc.description.references Izquierdo, M. S., Obach, A., Arantzamendi, L., Montero, D., Robaina, L., & Rosenlund, G. (2003). Dietary lipid sources for seabream and seabass: growth performance, tissue composition and flesh quality. Aquaculture Nutrition, 9(6), 397-407. doi:10.1046/j.1365-2095.2003.00270.x es_ES
dc.description.references Bell, J. G., McEvoy, J., Tocher, D. R., McGhee, F., Campbell, P. J., & Sargent, J. R. (2001). Replacement of Fish Oil with Rapeseed Oil in Diets of Atlantic Salmon (Salmo salar) Affects Tissue Lipid Compositions and Hepatocyte Fatty Acid Metabolism. The Journal of Nutrition, 131(5), 1535-1543. doi:10.1093/jn/131.5.1535 es_ES
dc.description.references Tinsley, I. J., Krueger, H. M., & Saddler, J. B. (1973). Fatty Acid Content of Coho Salmon, Oncorhynchus kisutch — A Statistical Approach to Changes Produced by Diet. Journal of the Fisheries Research Board of Canada, 30(11), 1661-1666. doi:10.1139/f73-266 es_ES
dc.description.references Madsen, L., Frøyland, L., Dyrøy, E., Helland, K., & Berge, R. K. (1998). Docosahexaenoic and eicosapentaenoic acids are differently metabolized in rat liver during mitochondria and peroxisome proliferation. Journal of Lipid Research, 39(3), 583-593. doi:10.1016/s0022-2275(20)33296-x es_ES
dc.description.references Benedito-Palos, L., Navarro, J. C., Bermejo-Nogales, A., Saera-Vila, A., Kaushik, S., & Pérez-Sánchez, J. (2009). The time course of fish oil wash-out follows a simple dilution model in gilthead sea bream (Sparus aurata L.) fed graded levels of vegetable oils. Aquaculture, 288(1-2), 98-105. doi:10.1016/j.aquaculture.2008.11.010 es_ES
dc.description.references Bordignon, F., Tomás-Vidal, A., Trocino, A., Milián Sorribes, M. C., Jover-Cerdá, M., & Martínez-Llorens, S. (2020). Fatty Acid Signatures in Different Tissues of Mediterranean Yellowtail, Seriola dumerili (Risso, 1810), Fed Diets Containing Different Levels of Vegetable and Fish Oils. Animals, 10(2), 198. doi:10.3390/ani10020198 es_ES
dc.description.references O’Fallon, J. V., Busboom, J. R., Nelson, M. L., & Gaskins, C. T. (2007). A direct method for fatty acid methyl ester synthesis: Application to wet meat tissues, oils, and feedstuffs. Journal of Animal Science, 85(6), 1511-1521. doi:10.2527/jas.2006-491 es_ES
dc.description.references Ulbricht, T. L. V., & Southgate, D. A. T. (1991). Coronary heart disease: seven dietary factors. The Lancet, 338(8773), 985-992. doi:10.1016/0140-6736(91)91846-m es_ES
dc.subject.ods 17.- Fortalecer los medios de ejecución y reavivar la alianza mundial para el desarrollo sostenible es_ES
dc.subject.ods 14.- Conservar y utilizar de forma sostenible los océanos, mares y recursos marinos para lograr el desarrollo sostenible es_ES
dc.subject.ods 12.- Garantizar las pautas de consumo y de producción sostenibles es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem