- -

InSilico Classifiers for the Assessment of Drug Proarrhythmicity

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

InSilico Classifiers for the Assessment of Drug Proarrhythmicity

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Llopis-Lorente, Jordi es_ES
dc.contributor.author Gomis-Tena Dolz, Julio es_ES
dc.contributor.author Cano, Jordi es_ES
dc.contributor.author Romero Pérez, Lucia es_ES
dc.contributor.author Saiz Rodríguez, Francisco Javier es_ES
dc.contributor.author Trenor Gomis, Beatriz Ana es_ES
dc.date.accessioned 2021-02-18T04:32:08Z
dc.date.available 2021-02-18T04:32:08Z
dc.date.issued 2020-10-26 es_ES
dc.identifier.issn 1549-9596 es_ES
dc.identifier.uri http://hdl.handle.net/10251/161698
dc.description.abstract [EN] Drug-induced torsade de pointes (TdP) is a life-threatening ventricular arrhythmia responsible for the withdrawal of many drugs from the market. Although currently used TdP risk-assessment methods are effective, they are expensive and prone to produce false positives. In recent years, in silico cardiac simulations have proven to be a valuable tool for the prediction of drug effects. The objective of this work is to evaluate different biomarkers of drug-induced proarrhythmic risk and to develop an in silico risk classifier. Cellular simulations were performed using a modified version of the O'Hara et al. ventricular action potential model and existing pharmacological data (IC50 and effective free therapeutic plasma concentration, EFTPC) for 109 drugs of known torsadogenic risk (51 positive). For each compound, four biomarkers were tested: T-x (drug concentration leading to a 10% prolongation of the action potential over the EFTPC), T-qNet (net charge carried by ionic currents when exposed to 10 times the EFTPC with respect to the net charge in control), T-triang (triangulation for a drug concentration of 10 times the EFTPC over triangulation in control), and T-EAD (drug concentration originating early afterdepolarizations over EFTPC). Receiver operating characteristic (ROC) curves were built for each biomarker to evaluate their individual predictive quality. At the optimal cutoff point, accuracies for T-x, T-qNet, T-triang, and T-EAD were 89.9, 91.7, 90.8, and 78.9% respectively. The resulting accuracy of the hERG IC50 test (current biomarker) was 78.9%. When combining T-x, T-qNet and T-triang into a classifier based on decision trees, the prediction improves, achieving an accuracy of 94.5%. The sensitivity analysis revealed that most of the effects on the action potential are mainly due to changes in I-Kr, I-CaL, I-NaL and I-Ks. In fact, considering that drugs affect only these four currents, TdP risk classification can be as accurate as when considering effects on the seven main currents proposed by the CiPA initiative. Finally, we built a ready-to-use tool (based on more than 450 000 simulations), which can be used to quickly assess the proarrhythmic risk of a compound. In conclusion, our in silico tool can be useful for the preclinical assessment of TdP-risk and to reduce costs related with new drug development. The TdP risk-assessment tool and the software used in this work are available at https://riunet.upv.es/handle/10251/136919. es_ES
dc.description.sponsorship This work was partially supported by the Direccion general de Politica Cientifica de la Generalitat Valenciana (PROMETEO/2020/043); by "Primeros Proyectos de Investigacion" (PAID06-18) from Vicerrectorado de Investigacion, Innovacion y Transferencia de la Universitat Politecnica de Valencia (UPV), Valencia, Spain; as well as from the "Plan Estatal de Investigacion Cientifica y Tecnica y de Innovacion 20172020" from the Ministerio de Ciencia e Innovacion y Universidades (PID2019-104356RB-C41/AEI/10.13039/501100011033). J.L.L. is being funded by the Ministerio de Ciencia, Innovacion y Universidades for the "Formacion de Profesorado Universitario" (Grant Reference: FPU18/01659). es_ES
dc.language Inglés es_ES
dc.publisher American Chemical Society es_ES
dc.relation.ispartof Journal of Chemical Information and Modeling es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.title InSilico Classifiers for the Assessment of Drug Proarrhythmicity es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1021/acs.jcim.0c00201 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//PAID-06-18/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MCIU//FPU18%2F01659/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2020%2F043/ES/MODELOS IN-SILICO MULTI-FISICOS Y MULTI-ESCALA DEL CORAZON PARA EL DESARROLLO DE NUEVOS METODOS DE PREVENCION, DIAGNOSTICO Y TRATAMIENTO EN MEDICINA PERSONALIZADA (HEART IN-SILICO MODELS)/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-104356RB-C41/ES/MODELO MULTIESCALA DE PATOLOGIAS CARDIACAS Y OPTIMIZACION DE TERAPIAS PERSONALIZADAS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica es_ES
dc.description.bibliographicCitation Llopis-Lorente, J.; Gomis-Tena Dolz, J.; Cano, J.; Romero Pérez, L.; Saiz Rodríguez, FJ.; Trenor Gomis, BA. (2020). InSilico Classifiers for the Assessment of Drug Proarrhythmicity. Journal of Chemical Information and Modeling. 60(10):5172-5187. https://doi.org/10.1021/acs.jcim.0c00201 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1021/acs.jcim.0c00201 es_ES
dc.description.upvformatpinicio 5172 es_ES
dc.description.upvformatpfin 5187 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 60 es_ES
dc.description.issue 10 es_ES
dc.relation.pasarela S\417313 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.contributor.funder Ministerio de Ciencia, Innovación y Universidades es_ES
dc.description.references Gintant, G. A. (2008). Preclinical Torsades-de-Pointes Screens: Advantages and limitations of surrogate and direct approaches in evaluating proarrhythmic risk. Pharmacology & Therapeutics, 119(2), 199-209. doi:10.1016/j.pharmthera.2008.04.010 es_ES
dc.description.references Vicente, J., Zusterzeel, R., Johannesen, L., Mason, J., Sager, P., Patel, V., … Strauss, D. G. (2017). Mechanistic Model-Informed Proarrhythmic Risk Assessment of Drugs: Review of the «CiPA» Initiative and Design of a Prospective Clinical Validation Study. Clinical Pharmacology & Therapeutics, 103(1), 54-66. doi:10.1002/cpt.896 es_ES
dc.description.references Colatsky, T., Fermini, B., Gintant, G., Pierson, J. B., Sager, P., Sekino, Y., … Stockbridge, N. (2016). The Comprehensive in Vitro Proarrhythmia Assay (CiPA) initiative — Update on progress. Journal of Pharmacological and Toxicological Methods, 81, 15-20. doi:10.1016/j.vascn.2016.06.002 es_ES
dc.description.references Li, Z., Ridder, B. J., Han, X., Wu, W. W., Sheng, J., Tran, P. N., … Strauss, D. G. (2018). Assessment of an In Silico Mechanistic Model for Proarrhythmia Risk Prediction Under the Ci PA Initiative. Clinical Pharmacology & Therapeutics, 105(2), 466-475. doi:10.1002/cpt.1184 es_ES
dc.description.references Sager, P. T., Gintant, G., Turner, J. R., Pettit, S., & Stockbridge, N. (2014). Rechanneling the cardiac proarrhythmia safety paradigm: A meeting report from the Cardiac Safety Research Consortium. American Heart Journal, 167(3), 292-300. doi:10.1016/j.ahj.2013.11.004 es_ES
dc.description.references Fermini, B., Hancox, J. C., Abi-Gerges, N., Bridgland-Taylor, M., Chaudhary, K. W., Colatsky, T., … Vandenberg, J. I. (2015). A New Perspective in the Field of Cardiac Safety Testing through the Comprehensive In Vitro Proarrhythmia Assay Paradigm. Journal of Biomolecular Screening, 21(1), 1-11. doi:10.1177/1087057115594589 es_ES
dc.description.references Mirams, G. R., Davies, M. R., Brough, S. J., Bridgland-Taylor, M. H., Cui, Y., Gavaghan, D. J., & Abi-Gerges, N. (2014). Prediction of Thorough QT study results using action potential simulations based on ion channel screens. Journal of Pharmacological and Toxicological Methods, 70(3), 246-254. doi:10.1016/j.vascn.2014.07.002 es_ES
dc.description.references Obiol-Pardo, C., Gomis-Tena, J., Sanz, F., Saiz, J., & Pastor, M. (2011). A Multiscale Simulation System for the Prediction of Drug-Induced Cardiotoxicity. Journal of Chemical Information and Modeling, 51(2), 483-492. doi:10.1021/ci100423z es_ES
dc.description.references Romero, L., Cano, J., Gomis-Tena, J., Trenor, B., Sanz, F., Pastor, M., & Saiz, J. (2018). In Silico QT and APD Prolongation Assay for Early Screening of Drug-Induced Proarrhythmic Risk. Journal of Chemical Information and Modeling, 58(4), 867-878. doi:10.1021/acs.jcim.7b00440 es_ES
dc.description.references Okada, J., Yoshinaga, T., Kurokawa, J., Washio, T., Furukawa, T., Sawada, K., … Hisada, T. (2018). Arrhythmic hazard map for a 3D whole-ventricle model under multiple ion channel block. British Journal of Pharmacology, 175(17), 3435-3452. doi:10.1111/bph.14357 es_ES
dc.description.references Dutta, S., Chang, K. C., Beattie, K. A., Sheng, J., Tran, P. N., Wu, W. W., … Li, Z. (2017). Optimization of an In silico Cardiac Cell Model for Proarrhythmia Risk Assessment. Frontiers in Physiology, 8. doi:10.3389/fphys.2017.00616 es_ES
dc.description.references Mirams, G. R., Cui, Y., Sher, A., Fink, M., Cooper, J., Heath, B. M., … Noble, D. (2011). Simulation of multiple ion channel block provides improved early prediction of compounds’ clinical torsadogenic risk. Cardiovascular Research, 91(1), 53-61. doi:10.1093/cvr/cvr044 es_ES
dc.description.references Kramer, J., Obejero-Paz, C. A., Myatt, G., Kuryshev, Y. A., Bruening-Wright, A., Verducci, J. S., & Brown, A. M. (2013). MICE Models: Superior to the HERG Model in Predicting Torsade de Pointes. Scientific Reports, 3(1). doi:10.1038/srep02100 es_ES
dc.description.references O’Hara, T., Virág, L., Varró, A., & Rudy, Y. (2011). Simulation of the Undiseased Human Cardiac Ventricular Action Potential: Model Formulation and Experimental Validation. PLoS Computational Biology, 7(5), e1002061. doi:10.1371/journal.pcbi.1002061 es_ES
dc.description.references Britton, O. J., Abi-Gerges, N., Page, G., Ghetti, A., Miller, P. E., & Rodriguez, B. (2017). Quantitative Comparison of Effects of Dofetilide, Sotalol, Quinidine, and Verapamil between Human Ex vivo Trabeculae and In silico Ventricular Models Incorporating Inter-Individual Action Potential Variability. Frontiers in Physiology, 8. doi:10.3389/fphys.2017.00597 es_ES
dc.description.references Passini, E., Mincholé, A., Coppini, R., Cerbai, E., Rodriguez, B., Severi, S., & Bueno-Orovio, A. (2016). Mechanisms of pro-arrhythmic abnormalities in ventricular repolarisation and anti-arrhythmic therapies in human hypertrophic cardiomyopathy. Journal of Molecular and Cellular Cardiology, 96, 72-81. doi:10.1016/j.yjmcc.2015.09.003 es_ES
dc.description.references Cavero, I., Guillon, J.-M., Ballet, V., Clements, M., Gerbeau, J.-F., & Holzgrefe, H. (2016). Comprehensive in vitro Proarrhythmia Assay (C i PA): Pending issues for successful validation and implementation. Journal of Pharmacological and Toxicological Methods, 81, 21-36. doi:10.1016/j.vascn.2016.05.012 es_ES
dc.description.references Dutta, S.; Strauss, D.; Colatsky, T.; Li, Z. In Optimization of an In Silico Cardiac Cell Model for Proarrhythmia Risk Assessment, 2016 Computing in Cardiology Conference (CinC); 2016; pp 869–872. es_ES
dc.description.references Mora, M. T., Ferrero, J. M., Romero, L., & Trenor, B. (2017). Sensitivity analysis revealing the effect of modulating ionic mechanisms on calcium dynamics in simulated human heart failure. PLOS ONE, 12(11), e0187739. doi:10.1371/journal.pone.0187739 es_ES
dc.description.references Parikh, J., Gurev, V., & Rice, J. J. (2017). Novel Two-Step Classifier for Torsades de Pointes Risk Stratification from Direct Features. Frontiers in Pharmacology, 8. doi:10.3389/fphar.2017.00816 es_ES
dc.description.references Woosley, R.; Romero, K.; Heise, W. Risk Categories for Drugs that Prolong QT & Induce Torsade de Pointes (TdP); AZCERT, Inc.: Oro Valley, AZ, 2019. https://www.crediblemeds.org/ (accessed March 9, 2020). es_ES
dc.description.references Parikh, J., Di Achille, P., Kozloski, J., & Gurev, V. (2019). Global Sensitivity Analysis of Ventricular Myocyte Model-Derived Metrics for Proarrhythmic Risk Assessment. Frontiers in Pharmacology, 10. doi:10.3389/fphar.2019.01054 es_ES
dc.description.references Varró, A., & Baczkó, I. (2011). Cardiac ventricular repolarization reserve: a principle for understanding drug-related proarrhythmic risk. British Journal of Pharmacology, 164(1), 14-36. doi:10.1111/j.1476-5381.2011.01367.x es_ES
dc.description.references Antzelevitch, C. (2007). Ionic, molecular, and cellular bases of QT-interval prolongation and torsade de pointes. Europace, 9(Supplement 4), iv4-iv15. doi:10.1093/europace/eum166 es_ES
dc.description.references Viswanathan, P. (1999). Pause induced early afterdepolarizations in the long QT syndrome: a simulation study. Cardiovascular Research, 42(2), 530-542. doi:10.1016/s0008-6363(99)00035-8 es_ES
dc.description.references Britton, O. J., Bueno-Orovio, A., Van Ammel, K., Lu, H. R., Towart, R., Gallacher, D. J., & Rodriguez, B. (2013). Experimentally calibrated population of models predicts and explains intersubject variability in cardiac cellular electrophysiology. Proceedings of the National Academy of Sciences, 110(23), E2098-E2105. doi:10.1073/pnas.1304382110 es_ES
dc.description.references Sobie, E. A. (2009). Parameter Sensitivity Analysis in Electrophysiological Models Using Multivariable Regression. Biophysical Journal, 96(4), 1264-1274. doi:10.1016/j.bpj.2008.10.056 es_ES
dc.description.references Hoffmann, P., & Warner, B. (2006). Are hERG channel inhibition and QT interval prolongation all there is in drug-induced torsadogenesis? A review of emerging trends. Journal of Pharmacological and Toxicological Methods, 53(2), 87-105. doi:10.1016/j.vascn.2005.07.003 es_ES
dc.description.references CANTILENAJR, L., KOERNER, J., TEMPLE, R., & THROCKMORTON, D. (2006). OIII-A-1FDA evaluation of cardiac repolarization data for 19 drugs and drug candidates. Clinical Pharmacology & Therapeutics, 79(2), P29-P29. doi:10.1016/j.clpt.2005.12.106 es_ES
dc.description.references REDFERN, W., CARLSSON, L., DAVIS, A., LYNCH, W., MACKENZIE, I., PALETHORPE, S., … WALLIS, R. (2003). Relationships between preclinical cardiac electrophysiology, clinical QT interval prolongation and torsade de pointes for a broad range of drugs: evidence for a provisional safety margin in drug development. Cardiovascular Research, 58(1), 32-45. doi:10.1016/s0008-6363(02)00846-5 es_ES
dc.description.references Tomek, J., Bueno-Orovio, A., Passini, E., Zhou, X., Minchole, A., Britton, O., … Rodriguez, B. (2019). Development, calibration, and validation of a novel human ventricular myocyte model in health, disease, and drug block. eLife, 8. doi:10.7554/elife.48890 es_ES
dc.description.references Passini, E., Trovato, C., Morissette, P., Sannajust, F., Bueno‐Orovio, A., & Rodriguez, B. (2019). Drug‐induced shortening of the electromechanical window is an effective biomarker for in silico prediction of clinical risk of arrhythmias. British Journal of Pharmacology, 176(19), 3819-3833. doi:10.1111/bph.14786 es_ES
dc.description.references Zhou, X., Qu, Y., Passini, E., Bueno-Orovio, A., Liu, Y., Vargas, H. M., & Rodriguez, B. (2020). Blinded In Silico Drug Trial Reveals the Minimum Set of Ion Channels for Torsades de Pointes Risk Assessment. Frontiers in Pharmacology, 10. doi:10.3389/fphar.2019.01643 es_ES
dc.description.references Lawrence, C. L., Bridgland-Taylor, M. H., Pollard, C. E., Hammond, T. G., & Valentin, J.-P. (2006). A Rabbit Langendorff Heart Proarrhythmia Model: Predictive Value for Clinical Identification of Torsades de Pointes. British Journal of Pharmacology, 149(7), 845-860. doi:10.1038/sj.bjp.0706894 es_ES
dc.description.references Ando, H., Yoshinaga, T., Yamamoto, W., Asakura, K., Uda, T., Taniguchi, T., … Sekino, Y. (2017). A new paradigm for drug-induced torsadogenic risk assessment using human iPS cell-derived cardiomyocytes. Journal of Pharmacological and Toxicological Methods, 84, 111-127. doi:10.1016/j.vascn.2016.12.003 es_ES
dc.description.references Cubeddu, L. (2016). Drug-induced Inhibition and Trafficking Disruption of ion Channels: Pathogenesis of QT Abnormalities and Drug-induced Fatal Arrhythmias. Current Cardiology Reviews, 12(2), 141-154. doi:10.2174/1573403x12666160301120217 es_ES
dc.description.references Nogawa, H., & Kawai, T. (2014). hERG trafficking inhibition in drug-induced lethal cardiac arrhythmia. European Journal of Pharmacology, 741, 336-339. doi:10.1016/j.ejphar.2014.06.044 es_ES
dc.description.references Kanlop, N., Chattipakorn, S., & Chattipakorn, N. (2011). Effects of cilostazol in the heart. Journal of Cardiovascular Medicine, 12(2), 88-95. doi:10.2459/jcm.0b013e3283439746 es_ES
dc.description.references Morosin, M., Dametto, E., Bianco, F. D., Brieda, M., & Nicolosi, G. L. (2017). An unusual etiology of torsade de pointes-induced syncope. Archives of Medical Science, 3, 686-688. doi:10.5114/aoms.2017.67287 es_ES
dc.description.references Nia, A. M., Dahlem, K. M., Gassanov, N., Hungerbühler, H., Fuhr, U., & Er, F. (2011). Clinical impact of fluvoxamine-mediated long QTU syndrome. European Journal of Clinical Pharmacology, 68(1), 109-111. doi:10.1007/s00228-011-1091-7 es_ES
dc.description.references HII, J. T. Y., WYSE, D. G., GILLIS, A. M., COHEN, J. M., & MITCHELL, L. B. (1991). Propafenone-Induced Torsade de Pointes: Cross-Reactivity with Quinidine. Pacing and Clinical Electrophysiology, 14(11), 1568-1570. doi:10.1111/j.1540-8159.1991.tb02729.x es_ES
dc.description.references Wenzel-Seifert, K., Wittmann, M., & Haen, E. (2011). QTc Prolongation by Psychotropic Drugs and the Risk of Torsade de Pointes. Deutsches Aerzteblatt Online. doi:10.3238/arztebl.2011.0687 es_ES
dc.description.references Beattie, K. A., Luscombe, C., Williams, G., Munoz-Muriedas, J., Gavaghan, D. J., Cui, Y., & Mirams, G. R. (2013). Evaluation of an in silico cardiac safety assay: Using ion channel screening data to predict QT interval changes in the rabbit ventricular wedge. Journal of Pharmacological and Toxicological Methods, 68(1), 88-96. doi:10.1016/j.vascn.2013.04.004 es_ES
dc.description.references Romero, L., Carbonell, B., Trenor, B., Rodríguez, B., Saiz, J., & Ferrero, J. M. (2011). Systematic characterization of the ionic basis of rabbit cellular electrophysiology using two ventricular models. Progress in Biophysics and Molecular Biology, 107(1), 60-73. doi:10.1016/j.pbiomolbio.2011.06.012 es_ES
dc.description.references Zicha, S., Moss, I., Allen, B., Varro, A., Papp, J., Dumaine, R., … Nattel, S. (2003). Molecular basis of species-specific expression of repolarizing K+ currents in the heart. American Journal of Physiology-Heart and Circulatory Physiology, 285(4), H1641-H1649. doi:10.1152/ajpheart.00346.2003 es_ES
dc.description.references Li, Z., Dutta, S., Sheng, J., Tran, P. N., Wu, W., Chang, K., … Colatsky, T. (2017). Improving the In Silico Assessment of Proarrhythmia Risk by Combining hERG (Human Ether-à-go-go-Related Gene) Channel–Drug Binding Kinetics and Multichannel Pharmacology. Circulation: Arrhythmia and Electrophysiology, 10(2). doi:10.1161/circep.116.004628 es_ES
dc.description.references Sahli Costabal, F., Matsuno, K., Yao, J., Perdikaris, P., & Kuhl, E. (2019). Machine learning in drug development: Characterizing the effect of 30 drugs on the QT interval using Gaussian process regression, sensitivity analysis, and uncertainty quantification. Computer Methods in Applied Mechanics and Engineering, 348, 313-333. doi:10.1016/j.cma.2019.01.033 es_ES
dc.description.references Lacerda, A. E., Kuryshev, Y. A., Chen, Y., Renganathan, M., Eng, H., Danthi, S. J., … Brown, A. M. (2007). Alfuzosin Delays Cardiac Repolarization by a Novel Mechanism. Journal of Pharmacology and Experimental Therapeutics, 324(2), 427-433. doi:10.1124/jpet.107.128405 es_ES
dc.description.references Yang, T., Chun, Y. W., Stroud, D. M., Mosley, J. D., Knollmann, B. C., Hong, C., & Roden, D. M. (2014). Screening for Acute I Kr Block Is Insufficient to Detect Torsades de Pointes Liability. Circulation, 130(3), 224-234. doi:10.1161/circulationaha.113.007765 es_ES
dc.description.references Crumb, W. J., Vicente, J., Johannesen, L., & Strauss, D. G. (2016). An evaluation of 30 clinical drugs against the comprehensive in vitro proarrhythmia assay (CiPA) proposed ion channel panel. Journal of Pharmacological and Toxicological Methods, 81, 251-262. doi:10.1016/j.vascn.2016.03.009 es_ES
dc.description.references Polak, S., Wiśniowska, B., & Brandys, J. (2009). Collation, assessment and analysis of literaturein vitrodata on hERG receptor blocking potency for subsequent modeling of drugs’ cardiotoxic properties. Journal of Applied Toxicology, 29(3), 183-206. doi:10.1002/jat.1395 es_ES
dc.description.references Gomis-Tena, J., Brown, B. M., Cano, J., Trenor, B., Yang, P.-C., Saiz, J., … Romero, L. (2020). When Does the IC50 Accurately Assess the Blocking Potency of a Drug? Journal of Chemical Information and Modeling, 60(3), 1779-1790. doi:10.1021/acs.jcim.9b01085 es_ES
dc.description.references Li, Z., Mirams, G. R., Yoshinaga, T., Ridder, B. J., Han, X., Chen, J. E., … Strauss, D. G. (2019). General Principles for the Validation of Proarrhythmia Risk Prediction Models: An Extension of the CiPA In Silico Strategy. Clinical Pharmacology & Therapeutics, 107(1), 102-111. doi:10.1002/cpt.1647 es_ES
dc.description.references Romero, L., Trenor, B., Yang, P.-C., Saiz, J., & Clancy, C. E. (2015). In silico screening of the impact of hERG channel kinetic abnormalities on channel block and susceptibility to acquired long QT syndrome. Journal of Molecular and Cellular Cardiology, 87, 271-282. doi:10.1016/j.yjmcc.2015.08.015 es_ES
dc.description.references Milnes, J. T., Witchel, H. J., Leaney, J. L., Leishman, D. J., & Hancox, J. C. (2010). Investigating dynamic protocol-dependence of hERG potassium channel inhibition at 37°C: Cisapride versus dofetilide. Journal of Pharmacological and Toxicological Methods, 61(2), 178-191. doi:10.1016/j.vascn.2010.02.007 es_ES
dc.description.references DI VEROLI, G. Y., DAVIES, M. R., ZHANG, H., ABI-GERGES, N., & BOYETT, M. R. (2013). hERG Inhibitors with Similar Potency But Different Binding Kinetics Do Not Pose the Same Proarrhythmic Risk: Implications for Drug Safety Assessment. Journal of Cardiovascular Electrophysiology, 25(2), 197-207. doi:10.1111/jce.12289 es_ES
dc.description.references Brown, C. S., Farmer, R. G., Soberman, J. E., & Eichner, S. F. (2004). Pharmacokinetic Factors in the Adverse Cardiovascular Effects of Antipsychotic Drugs. Clinical Pharmacokinetics, 43(1), 33-56. doi:10.2165/00003088-200443010-00003 es_ES
dc.description.references Van Noord, C., Dieleman, J. P., van Herpen, G., Verhamme, K., & Sturkenboom, M. C. J. M. (2010). Domperidone and Ventricular Arrhythmia or Sudden Cardiac Death. Drug Safety, 33(11), 1003-1014. doi:10.2165/11536840-000000000-00000 es_ES
dc.description.references Wiśniowska, B., & Polak, S. (2017). Am I or am I not proarrhythmic? Comparison of various classifications of drug TdP propensity. Drug Discovery Today, 22(1), 10-16. doi:10.1016/j.drudis.2016.09.027 es_ES
dc.subject.ods 03.- Garantizar una vida saludable y promover el bienestar para todos y todas en todas las edades es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem