dc.contributor.author |
Llopis-Lorente, Jordi
|
es_ES |
dc.contributor.author |
Gomis-Tena Dolz, Julio
|
es_ES |
dc.contributor.author |
Cano, Jordi
|
es_ES |
dc.contributor.author |
Romero Pérez, Lucia
|
es_ES |
dc.contributor.author |
Saiz Rodríguez, Francisco Javier
|
es_ES |
dc.contributor.author |
Trenor Gomis, Beatriz Ana
|
es_ES |
dc.date.accessioned |
2021-02-18T04:32:08Z |
|
dc.date.available |
2021-02-18T04:32:08Z |
|
dc.date.issued |
2020-10-26 |
es_ES |
dc.identifier.issn |
1549-9596 |
es_ES |
dc.identifier.uri |
http://hdl.handle.net/10251/161698 |
|
dc.description.abstract |
[EN] Drug-induced torsade de pointes (TdP) is a life-threatening ventricular arrhythmia responsible for the withdrawal of many drugs from the market. Although currently used TdP risk-assessment methods are effective, they are expensive and prone to produce false positives. In recent years, in silico cardiac simulations have proven to be a valuable tool for the prediction of drug effects. The objective of this work is to evaluate different biomarkers of drug-induced proarrhythmic risk and to develop an in silico risk classifier. Cellular simulations were performed using a modified version of the O'Hara et al. ventricular action potential model and existing pharmacological data (IC50 and effective free therapeutic plasma concentration, EFTPC) for 109 drugs of known torsadogenic risk (51 positive). For each compound, four biomarkers were tested: T-x (drug concentration leading to a 10% prolongation of the action potential over the EFTPC), T-qNet (net charge carried by ionic currents when exposed to 10 times the EFTPC with respect to the net charge in control), T-triang (triangulation for a drug concentration of 10 times the EFTPC over triangulation in control), and T-EAD (drug concentration originating early afterdepolarizations over EFTPC). Receiver operating characteristic (ROC) curves were built for each biomarker to evaluate their individual predictive quality. At the optimal cutoff point, accuracies for T-x, T-qNet, T-triang, and T-EAD were 89.9, 91.7, 90.8, and 78.9% respectively. The resulting accuracy of the hERG IC50 test (current biomarker) was 78.9%. When combining T-x, T-qNet and T-triang into a classifier based on decision trees, the prediction improves, achieving an accuracy of 94.5%. The sensitivity analysis revealed that most of the effects on the action potential are mainly due to changes in I-Kr, I-CaL, I-NaL and I-Ks. In fact, considering that drugs affect only these four currents, TdP risk classification can be as accurate as when considering effects on the seven main currents proposed by the CiPA initiative. Finally, we built a ready-to-use tool (based on more than 450 000 simulations), which can be used to quickly assess the proarrhythmic risk of a compound. In conclusion, our in silico tool can be useful for the preclinical assessment of TdP-risk and to reduce costs related with new drug development. The TdP risk-assessment tool and the software used in this work are available at https://riunet.upv.es/handle/10251/136919. |
es_ES |
dc.description.sponsorship |
This work was partially supported by the Direccion general de Politica Cientifica de la Generalitat Valenciana (PROMETEO/2020/043); by "Primeros Proyectos de Investigacion" (PAID06-18) from Vicerrectorado de Investigacion, Innovacion y Transferencia de la Universitat Politecnica de Valencia (UPV), Valencia, Spain; as well as from the "Plan Estatal de Investigacion Cientifica y Tecnica y de Innovacion 20172020" from the Ministerio de Ciencia e Innovacion y Universidades (PID2019-104356RB-C41/AEI/10.13039/501100011033). J.L.L. is being funded by the Ministerio de Ciencia, Innovacion y Universidades for the "Formacion de Profesorado Universitario" (Grant Reference: FPU18/01659). |
es_ES |
dc.language |
Inglés |
es_ES |
dc.publisher |
American Chemical Society |
es_ES |
dc.relation.ispartof |
Journal of Chemical Information and Modeling |
es_ES |
dc.rights |
Reserva de todos los derechos |
es_ES |
dc.subject.classification |
TECNOLOGIA ELECTRONICA |
es_ES |
dc.title |
InSilico Classifiers for the Assessment of Drug Proarrhythmicity |
es_ES |
dc.type |
Artículo |
es_ES |
dc.identifier.doi |
10.1021/acs.jcim.0c00201 |
es_ES |
dc.relation.projectID |
info:eu-repo/grantAgreement/UPV//PAID-06-18/ |
es_ES |
dc.relation.projectID |
info:eu-repo/grantAgreement/MCIU//FPU18%2F01659/ |
es_ES |
dc.relation.projectID |
info:eu-repo/grantAgreement/GVA//PROMETEO%2F2020%2F043/ES/MODELOS IN-SILICO MULTI-FISICOS Y MULTI-ESCALA DEL CORAZON PARA EL DESARROLLO DE NUEVOS METODOS DE PREVENCION, DIAGNOSTICO Y TRATAMIENTO EN MEDICINA PERSONALIZADA (HEART IN-SILICO MODELS)/ |
es_ES |
dc.relation.projectID |
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-104356RB-C41/ES/MODELO MULTIESCALA DE PATOLOGIAS CARDIACAS Y OPTIMIZACION DE TERAPIAS PERSONALIZADAS/ |
es_ES |
dc.rights.accessRights |
Abierto |
es_ES |
dc.contributor.affiliation |
Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica |
es_ES |
dc.description.bibliographicCitation |
Llopis-Lorente, J.; Gomis-Tena Dolz, J.; Cano, J.; Romero Pérez, L.; Saiz Rodríguez, FJ.; Trenor Gomis, BA. (2020). InSilico Classifiers for the Assessment of Drug Proarrhythmicity. Journal of Chemical Information and Modeling. 60(10):5172-5187. https://doi.org/10.1021/acs.jcim.0c00201 |
es_ES |
dc.description.accrualMethod |
S |
es_ES |
dc.relation.publisherversion |
https://doi.org/10.1021/acs.jcim.0c00201 |
es_ES |
dc.description.upvformatpinicio |
5172 |
es_ES |
dc.description.upvformatpfin |
5187 |
es_ES |
dc.type.version |
info:eu-repo/semantics/publishedVersion |
es_ES |
dc.description.volume |
60 |
es_ES |
dc.description.issue |
10 |
es_ES |
dc.relation.pasarela |
S\417313 |
es_ES |
dc.contributor.funder |
Generalitat Valenciana |
es_ES |
dc.contributor.funder |
Agencia Estatal de Investigación |
es_ES |
dc.contributor.funder |
Universitat Politècnica de València |
es_ES |
dc.contributor.funder |
Ministerio de Ciencia, Innovación y Universidades |
es_ES |
dc.description.references |
Gintant, G. A. (2008). Preclinical Torsades-de-Pointes Screens: Advantages and limitations of surrogate and direct approaches in evaluating proarrhythmic risk. Pharmacology & Therapeutics, 119(2), 199-209. doi:10.1016/j.pharmthera.2008.04.010 |
es_ES |
dc.description.references |
Vicente, J., Zusterzeel, R., Johannesen, L., Mason, J., Sager, P., Patel, V., … Strauss, D. G. (2017). Mechanistic Model-Informed Proarrhythmic Risk Assessment of Drugs: Review of the «CiPA» Initiative and Design of a Prospective Clinical Validation Study. Clinical Pharmacology & Therapeutics, 103(1), 54-66. doi:10.1002/cpt.896 |
es_ES |
dc.description.references |
Colatsky, T., Fermini, B., Gintant, G., Pierson, J. B., Sager, P., Sekino, Y., … Stockbridge, N. (2016). The Comprehensive in Vitro Proarrhythmia Assay (CiPA) initiative — Update on progress. Journal of Pharmacological and Toxicological Methods, 81, 15-20. doi:10.1016/j.vascn.2016.06.002 |
es_ES |
dc.description.references |
Li, Z., Ridder, B. J., Han, X., Wu, W. W., Sheng, J., Tran, P. N., … Strauss, D. G. (2018). Assessment of an
In Silico
Mechanistic Model for Proarrhythmia Risk Prediction Under the Ci
PA
Initiative. Clinical Pharmacology & Therapeutics, 105(2), 466-475. doi:10.1002/cpt.1184 |
es_ES |
dc.description.references |
Sager, P. T., Gintant, G., Turner, J. R., Pettit, S., & Stockbridge, N. (2014). Rechanneling the cardiac proarrhythmia safety paradigm: A meeting report from the Cardiac Safety Research Consortium. American Heart Journal, 167(3), 292-300. doi:10.1016/j.ahj.2013.11.004 |
es_ES |
dc.description.references |
Fermini, B., Hancox, J. C., Abi-Gerges, N., Bridgland-Taylor, M., Chaudhary, K. W., Colatsky, T., … Vandenberg, J. I. (2015). A New Perspective in the Field of Cardiac Safety Testing through the Comprehensive In Vitro Proarrhythmia Assay Paradigm. Journal of Biomolecular Screening, 21(1), 1-11. doi:10.1177/1087057115594589 |
es_ES |
dc.description.references |
Mirams, G. R., Davies, M. R., Brough, S. J., Bridgland-Taylor, M. H., Cui, Y., Gavaghan, D. J., & Abi-Gerges, N. (2014). Prediction of Thorough QT study results using action potential simulations based on ion channel screens. Journal of Pharmacological and Toxicological Methods, 70(3), 246-254. doi:10.1016/j.vascn.2014.07.002 |
es_ES |
dc.description.references |
Obiol-Pardo, C., Gomis-Tena, J., Sanz, F., Saiz, J., & Pastor, M. (2011). A Multiscale Simulation System for the Prediction of Drug-Induced Cardiotoxicity. Journal of Chemical Information and Modeling, 51(2), 483-492. doi:10.1021/ci100423z |
es_ES |
dc.description.references |
Romero, L., Cano, J., Gomis-Tena, J., Trenor, B., Sanz, F., Pastor, M., & Saiz, J. (2018). In Silico QT and APD Prolongation Assay for Early Screening of Drug-Induced Proarrhythmic Risk. Journal of Chemical Information and Modeling, 58(4), 867-878. doi:10.1021/acs.jcim.7b00440 |
es_ES |
dc.description.references |
Okada, J., Yoshinaga, T., Kurokawa, J., Washio, T., Furukawa, T., Sawada, K., … Hisada, T. (2018). Arrhythmic hazard map for a 3D whole-ventricle model under multiple ion channel block. British Journal of Pharmacology, 175(17), 3435-3452. doi:10.1111/bph.14357 |
es_ES |
dc.description.references |
Dutta, S., Chang, K. C., Beattie, K. A., Sheng, J., Tran, P. N., Wu, W. W., … Li, Z. (2017). Optimization of an In silico Cardiac Cell Model for Proarrhythmia Risk Assessment. Frontiers in Physiology, 8. doi:10.3389/fphys.2017.00616 |
es_ES |
dc.description.references |
Mirams, G. R., Cui, Y., Sher, A., Fink, M., Cooper, J., Heath, B. M., … Noble, D. (2011). Simulation of multiple ion channel block provides improved early prediction of compounds’ clinical torsadogenic risk. Cardiovascular Research, 91(1), 53-61. doi:10.1093/cvr/cvr044 |
es_ES |
dc.description.references |
Kramer, J., Obejero-Paz, C. A., Myatt, G., Kuryshev, Y. A., Bruening-Wright, A., Verducci, J. S., & Brown, A. M. (2013). MICE Models: Superior to the HERG Model in Predicting Torsade de Pointes. Scientific Reports, 3(1). doi:10.1038/srep02100 |
es_ES |
dc.description.references |
O’Hara, T., Virág, L., Varró, A., & Rudy, Y. (2011). Simulation of the Undiseased Human Cardiac Ventricular Action Potential: Model Formulation and Experimental Validation. PLoS Computational Biology, 7(5), e1002061. doi:10.1371/journal.pcbi.1002061 |
es_ES |
dc.description.references |
Britton, O. J., Abi-Gerges, N., Page, G., Ghetti, A., Miller, P. E., & Rodriguez, B. (2017). Quantitative Comparison of Effects of Dofetilide, Sotalol, Quinidine, and Verapamil between Human Ex vivo Trabeculae and In silico Ventricular Models Incorporating Inter-Individual Action Potential Variability. Frontiers in Physiology, 8. doi:10.3389/fphys.2017.00597 |
es_ES |
dc.description.references |
Passini, E., Mincholé, A., Coppini, R., Cerbai, E., Rodriguez, B., Severi, S., & Bueno-Orovio, A. (2016). Mechanisms of pro-arrhythmic abnormalities in ventricular repolarisation and anti-arrhythmic therapies in human hypertrophic cardiomyopathy. Journal of Molecular and Cellular Cardiology, 96, 72-81. doi:10.1016/j.yjmcc.2015.09.003 |
es_ES |
dc.description.references |
Cavero, I., Guillon, J.-M., Ballet, V., Clements, M., Gerbeau, J.-F., & Holzgrefe, H. (2016). Comprehensive in vitro Proarrhythmia Assay (C i PA): Pending issues for successful validation and implementation. Journal of Pharmacological and Toxicological Methods, 81, 21-36. doi:10.1016/j.vascn.2016.05.012 |
es_ES |
dc.description.references |
Dutta, S.; Strauss, D.; Colatsky, T.; Li, Z. In Optimization of an In Silico Cardiac Cell Model for Proarrhythmia Risk Assessment, 2016 Computing in Cardiology Conference (CinC); 2016; pp 869–872. |
es_ES |
dc.description.references |
Mora, M. T., Ferrero, J. M., Romero, L., & Trenor, B. (2017). Sensitivity analysis revealing the effect of modulating ionic mechanisms on calcium dynamics in simulated human heart failure. PLOS ONE, 12(11), e0187739. doi:10.1371/journal.pone.0187739 |
es_ES |
dc.description.references |
Parikh, J., Gurev, V., & Rice, J. J. (2017). Novel Two-Step Classifier for Torsades de Pointes Risk Stratification from Direct Features. Frontiers in Pharmacology, 8. doi:10.3389/fphar.2017.00816 |
es_ES |
dc.description.references |
Woosley, R.; Romero, K.; Heise, W. Risk Categories for Drugs that Prolong QT & Induce Torsade de Pointes (TdP); AZCERT, Inc.: Oro Valley, AZ, 2019. https://www.crediblemeds.org/ (accessed March 9, 2020). |
es_ES |
dc.description.references |
Parikh, J., Di Achille, P., Kozloski, J., & Gurev, V. (2019). Global Sensitivity Analysis of Ventricular Myocyte Model-Derived Metrics for Proarrhythmic Risk Assessment. Frontiers in Pharmacology, 10. doi:10.3389/fphar.2019.01054 |
es_ES |
dc.description.references |
Varró, A., & Baczkó, I. (2011). Cardiac ventricular repolarization reserve: a principle for understanding drug-related proarrhythmic risk. British Journal of Pharmacology, 164(1), 14-36. doi:10.1111/j.1476-5381.2011.01367.x |
es_ES |
dc.description.references |
Antzelevitch, C. (2007). Ionic, molecular, and cellular bases of QT-interval prolongation and torsade de pointes. Europace, 9(Supplement 4), iv4-iv15. doi:10.1093/europace/eum166 |
es_ES |
dc.description.references |
Viswanathan, P. (1999). Pause induced early afterdepolarizations in the long QT syndrome: a simulation study. Cardiovascular Research, 42(2), 530-542. doi:10.1016/s0008-6363(99)00035-8 |
es_ES |
dc.description.references |
Britton, O. J., Bueno-Orovio, A., Van Ammel, K., Lu, H. R., Towart, R., Gallacher, D. J., & Rodriguez, B. (2013). Experimentally calibrated population of models predicts and explains intersubject variability in cardiac cellular electrophysiology. Proceedings of the National Academy of Sciences, 110(23), E2098-E2105. doi:10.1073/pnas.1304382110 |
es_ES |
dc.description.references |
Sobie, E. A. (2009). Parameter Sensitivity Analysis in Electrophysiological Models Using Multivariable Regression. Biophysical Journal, 96(4), 1264-1274. doi:10.1016/j.bpj.2008.10.056 |
es_ES |
dc.description.references |
Hoffmann, P., & Warner, B. (2006). Are hERG channel inhibition and QT interval prolongation all there is in drug-induced torsadogenesis? A review of emerging trends. Journal of Pharmacological and Toxicological Methods, 53(2), 87-105. doi:10.1016/j.vascn.2005.07.003 |
es_ES |
dc.description.references |
CANTILENAJR, L., KOERNER, J., TEMPLE, R., & THROCKMORTON, D. (2006). OIII-A-1FDA evaluation of cardiac repolarization data for 19 drugs and drug candidates. Clinical Pharmacology & Therapeutics, 79(2), P29-P29. doi:10.1016/j.clpt.2005.12.106 |
es_ES |
dc.description.references |
REDFERN, W., CARLSSON, L., DAVIS, A., LYNCH, W., MACKENZIE, I., PALETHORPE, S., … WALLIS, R. (2003). Relationships between preclinical cardiac electrophysiology, clinical QT interval prolongation and torsade de pointes for a broad range of drugs: evidence for a provisional safety margin in drug development. Cardiovascular Research, 58(1), 32-45. doi:10.1016/s0008-6363(02)00846-5 |
es_ES |
dc.description.references |
Tomek, J., Bueno-Orovio, A., Passini, E., Zhou, X., Minchole, A., Britton, O., … Rodriguez, B. (2019). Development, calibration, and validation of a novel human ventricular myocyte model in health, disease, and drug block. eLife, 8. doi:10.7554/elife.48890 |
es_ES |
dc.description.references |
Passini, E., Trovato, C., Morissette, P., Sannajust, F., Bueno‐Orovio, A., & Rodriguez, B. (2019). Drug‐induced shortening of the electromechanical window is an effective biomarker for in silico prediction of clinical risk of arrhythmias. British Journal of Pharmacology, 176(19), 3819-3833. doi:10.1111/bph.14786 |
es_ES |
dc.description.references |
Zhou, X., Qu, Y., Passini, E., Bueno-Orovio, A., Liu, Y., Vargas, H. M., & Rodriguez, B. (2020). Blinded In Silico Drug Trial Reveals the Minimum Set of Ion Channels for Torsades de Pointes Risk Assessment. Frontiers in Pharmacology, 10. doi:10.3389/fphar.2019.01643 |
es_ES |
dc.description.references |
Lawrence, C. L., Bridgland-Taylor, M. H., Pollard, C. E., Hammond, T. G., & Valentin, J.-P. (2006). A Rabbit Langendorff Heart Proarrhythmia Model: Predictive Value for Clinical Identification of Torsades de Pointes. British Journal of Pharmacology, 149(7), 845-860. doi:10.1038/sj.bjp.0706894 |
es_ES |
dc.description.references |
Ando, H., Yoshinaga, T., Yamamoto, W., Asakura, K., Uda, T., Taniguchi, T., … Sekino, Y. (2017). A new paradigm for drug-induced torsadogenic risk assessment using human iPS cell-derived cardiomyocytes. Journal of Pharmacological and Toxicological Methods, 84, 111-127. doi:10.1016/j.vascn.2016.12.003 |
es_ES |
dc.description.references |
Cubeddu, L. (2016). Drug-induced Inhibition and Trafficking Disruption of ion Channels: Pathogenesis of QT Abnormalities and Drug-induced Fatal Arrhythmias. Current Cardiology Reviews, 12(2), 141-154. doi:10.2174/1573403x12666160301120217 |
es_ES |
dc.description.references |
Nogawa, H., & Kawai, T. (2014). hERG trafficking inhibition in drug-induced lethal cardiac arrhythmia. European Journal of Pharmacology, 741, 336-339. doi:10.1016/j.ejphar.2014.06.044 |
es_ES |
dc.description.references |
Kanlop, N., Chattipakorn, S., & Chattipakorn, N. (2011). Effects of cilostazol in the heart. Journal of Cardiovascular Medicine, 12(2), 88-95. doi:10.2459/jcm.0b013e3283439746 |
es_ES |
dc.description.references |
Morosin, M., Dametto, E., Bianco, F. D., Brieda, M., & Nicolosi, G. L. (2017). An unusual etiology of torsade de pointes-induced syncope. Archives of Medical Science, 3, 686-688. doi:10.5114/aoms.2017.67287 |
es_ES |
dc.description.references |
Nia, A. M., Dahlem, K. M., Gassanov, N., Hungerbühler, H., Fuhr, U., & Er, F. (2011). Clinical impact of fluvoxamine-mediated long QTU syndrome. European Journal of Clinical Pharmacology, 68(1), 109-111. doi:10.1007/s00228-011-1091-7 |
es_ES |
dc.description.references |
HII, J. T. Y., WYSE, D. G., GILLIS, A. M., COHEN, J. M., & MITCHELL, L. B. (1991). Propafenone-Induced Torsade de Pointes: Cross-Reactivity with Quinidine. Pacing and Clinical Electrophysiology, 14(11), 1568-1570. doi:10.1111/j.1540-8159.1991.tb02729.x |
es_ES |
dc.description.references |
Wenzel-Seifert, K., Wittmann, M., & Haen, E. (2011). QTc Prolongation by Psychotropic Drugs and the Risk of Torsade de Pointes. Deutsches Aerzteblatt Online. doi:10.3238/arztebl.2011.0687 |
es_ES |
dc.description.references |
Beattie, K. A., Luscombe, C., Williams, G., Munoz-Muriedas, J., Gavaghan, D. J., Cui, Y., & Mirams, G. R. (2013). Evaluation of an in silico cardiac safety assay: Using ion channel screening data to predict QT interval changes in the rabbit ventricular wedge. Journal of Pharmacological and Toxicological Methods, 68(1), 88-96. doi:10.1016/j.vascn.2013.04.004 |
es_ES |
dc.description.references |
Romero, L., Carbonell, B., Trenor, B., Rodríguez, B., Saiz, J., & Ferrero, J. M. (2011). Systematic characterization of the ionic basis of rabbit cellular electrophysiology using two ventricular models. Progress in Biophysics and Molecular Biology, 107(1), 60-73. doi:10.1016/j.pbiomolbio.2011.06.012 |
es_ES |
dc.description.references |
Zicha, S., Moss, I., Allen, B., Varro, A., Papp, J., Dumaine, R., … Nattel, S. (2003). Molecular basis of species-specific expression of repolarizing K+ currents in the heart. American Journal of Physiology-Heart and Circulatory Physiology, 285(4), H1641-H1649. doi:10.1152/ajpheart.00346.2003 |
es_ES |
dc.description.references |
Li, Z., Dutta, S., Sheng, J., Tran, P. N., Wu, W., Chang, K., … Colatsky, T. (2017). Improving the In Silico Assessment of Proarrhythmia Risk by Combining hERG (Human Ether-à-go-go-Related Gene) Channel–Drug Binding Kinetics and Multichannel Pharmacology. Circulation: Arrhythmia and Electrophysiology, 10(2). doi:10.1161/circep.116.004628 |
es_ES |
dc.description.references |
Sahli Costabal, F., Matsuno, K., Yao, J., Perdikaris, P., & Kuhl, E. (2019). Machine learning in drug development: Characterizing the effect of 30 drugs on the QT interval using Gaussian process regression, sensitivity analysis, and uncertainty quantification. Computer Methods in Applied Mechanics and Engineering, 348, 313-333. doi:10.1016/j.cma.2019.01.033 |
es_ES |
dc.description.references |
Lacerda, A. E., Kuryshev, Y. A., Chen, Y., Renganathan, M., Eng, H., Danthi, S. J., … Brown, A. M. (2007). Alfuzosin Delays Cardiac Repolarization by a Novel Mechanism. Journal of Pharmacology and Experimental Therapeutics, 324(2), 427-433. doi:10.1124/jpet.107.128405 |
es_ES |
dc.description.references |
Yang, T., Chun, Y. W., Stroud, D. M., Mosley, J. D., Knollmann, B. C., Hong, C., & Roden, D. M. (2014). Screening for Acute
I
Kr
Block Is Insufficient to Detect Torsades de Pointes Liability. Circulation, 130(3), 224-234. doi:10.1161/circulationaha.113.007765 |
es_ES |
dc.description.references |
Crumb, W. J., Vicente, J., Johannesen, L., & Strauss, D. G. (2016). An evaluation of 30 clinical drugs against the comprehensive in vitro proarrhythmia assay (CiPA) proposed ion channel panel. Journal of Pharmacological and Toxicological Methods, 81, 251-262. doi:10.1016/j.vascn.2016.03.009 |
es_ES |
dc.description.references |
Polak, S., Wiśniowska, B., & Brandys, J. (2009). Collation, assessment and analysis of literaturein vitrodata on hERG receptor blocking potency for subsequent modeling of drugs’ cardiotoxic properties. Journal of Applied Toxicology, 29(3), 183-206. doi:10.1002/jat.1395 |
es_ES |
dc.description.references |
Gomis-Tena, J., Brown, B. M., Cano, J., Trenor, B., Yang, P.-C., Saiz, J., … Romero, L. (2020). When Does the IC50 Accurately Assess the Blocking Potency of a Drug? Journal of Chemical Information and Modeling, 60(3), 1779-1790. doi:10.1021/acs.jcim.9b01085 |
es_ES |
dc.description.references |
Li, Z., Mirams, G. R., Yoshinaga, T., Ridder, B. J., Han, X., Chen, J. E., … Strauss, D. G. (2019). General Principles for the Validation of Proarrhythmia Risk Prediction Models: An Extension of the CiPA
In Silico
Strategy. Clinical Pharmacology & Therapeutics, 107(1), 102-111. doi:10.1002/cpt.1647 |
es_ES |
dc.description.references |
Romero, L., Trenor, B., Yang, P.-C., Saiz, J., & Clancy, C. E. (2015). In silico screening of the impact of hERG channel kinetic abnormalities on channel block and susceptibility to acquired long QT syndrome. Journal of Molecular and Cellular Cardiology, 87, 271-282. doi:10.1016/j.yjmcc.2015.08.015 |
es_ES |
dc.description.references |
Milnes, J. T., Witchel, H. J., Leaney, J. L., Leishman, D. J., & Hancox, J. C. (2010). Investigating dynamic protocol-dependence of hERG potassium channel inhibition at 37°C: Cisapride versus dofetilide. Journal of Pharmacological and Toxicological Methods, 61(2), 178-191. doi:10.1016/j.vascn.2010.02.007 |
es_ES |
dc.description.references |
DI VEROLI, G. Y., DAVIES, M. R., ZHANG, H., ABI-GERGES, N., & BOYETT, M. R. (2013). hERG Inhibitors with Similar Potency But Different Binding Kinetics Do Not Pose the Same Proarrhythmic Risk: Implications for Drug Safety Assessment. Journal of Cardiovascular Electrophysiology, 25(2), 197-207. doi:10.1111/jce.12289 |
es_ES |
dc.description.references |
Brown, C. S., Farmer, R. G., Soberman, J. E., & Eichner, S. F. (2004). Pharmacokinetic Factors in the Adverse Cardiovascular Effects of Antipsychotic Drugs. Clinical Pharmacokinetics, 43(1), 33-56. doi:10.2165/00003088-200443010-00003 |
es_ES |
dc.description.references |
Van Noord, C., Dieleman, J. P., van Herpen, G., Verhamme, K., & Sturkenboom, M. C. J. M. (2010). Domperidone and Ventricular Arrhythmia or Sudden Cardiac Death. Drug Safety, 33(11), 1003-1014. doi:10.2165/11536840-000000000-00000 |
es_ES |
dc.description.references |
Wiśniowska, B., & Polak, S. (2017). Am I or am I not proarrhythmic? Comparison of various classifications of drug TdP propensity. Drug Discovery Today, 22(1), 10-16. doi:10.1016/j.drudis.2016.09.027 |
es_ES |
dc.subject.ods |
03.- Garantizar una vida saludable y promover el bienestar para todos y todas en todas las edades |
es_ES |